

September 11, 2019

Mr. Mark Doolan
Project Coordinator
United States Environmental Protection Agency – Region VII (AWMD/WRAP)
11201 Renner Boulevard
Lenexa, KS 66219

Subject:

Collis, Inc. (EPA ID No. IAD047303771)

Clinton, Iowa

Final 2019 First-Half Semi-Annual LTM Summary Report

Dear Mr. Doolan,

On behalf of Collis, Inc., BB&E, Inc. is pleased to submit a hardcopy of the *Final 2019 First-Half Semi-Annual Long-Term Monitoring Summary Report*.

If you have any questions concerning this document, or any other issues regarding this project, please call me at (248) 489-9636, Extension 317.

Sincerely,

Cindy Lang

Project Manager

Cc: Brian Calhoun, SSW Holding Company, Inc.

RCRA 09/16/2019

RECEIVED

SEP 16 2019

Collis, Inc. – Semi-Annual Long Term Monitoring (LTM)
2019 First-Half Semi-Annual LTM Summary Report- FINAL

Report Date:

September 11, 2019

D. Mark Doolan U.S. Environmental Protection Agency Air and Waste Management Division, WRAP Branch 11201 Renner Blvd. Lenexa, KS 66219 913-551-7169

Site Name:

Collis, Inc.

Clinton, Iowa

Corrective Measures Implementation - Long Term Monitoring

U.S. EPA ID #IAD047303771

Prepared by:

Cindy Lang, BB&E, Inc.

BB&E, Inc. (BB&E) is pleased to provide this 2019 First-Half Semi-Annual Long-Term Monitoring (LTM) Summary Report. This report documents the first semi-annual LTM sampling event of 2019 conducted April 8, 2019 through April 9, 2019 at the Collis Facility (Site) located at 2005 South 19th Street in Clinton, Clinton County, Iowa (**Figure 1** and **Figure 2**). The Site includes an industrial manufacturing plant and covers an area of approximately 12.5 acres. A detailed summary of the operational history of the site, environmental setting (e.g., land use, topography, site geology and hydrogeology), historic environmental investigations completed, and the sources and extents of known contamination can be found in the USEPA approved *Final Corrective Measures Study Report* (CMS), dated April 24, 2018 (BB&E, 2018).

The CMS includes recommendations for soil land use controls (LUCs)/institutional controls (ICs). Because contamination remains in groundwater on-site and off-site at concentrations exceeding United States Environmental Protection Agency Maximum Contaminant Level (U.S. EPA MCL) criteria, resource-use restrictions via on-site and off-site Environmental Restrictive Covenants (ERC's) was developed. The ERCs restrict impacted properties from residential use and prohibit groundwater access and consumption. As noted in the *Revised Final Corrective Measures Implementation – Long Term Monitoring Work Plan* (CMI-LTM WP; BB&E, 2019a), which was

submitted to, and approved by the U.S. EPA, the CMS included recommendations for LTM of groundwater, in addition to the ERC's, including semi-annual groundwater monitoring for five years. Following the five years of semi-annual LTM, an evaluation will be conducted to determine the effectiveness of the monitored natural attenuation (MNA) groundwater remedy. Additionally, due to residual contamination in subsurface soils (2-10 feet below ground surface [bgs]) above U.S. EPA screening levels, a Media Management Plan (MMP) was developed to protect construction workers from exposure to subsurface contamination (BB&E, 2017). The MMP includes inspection and maintenance requirements for the gravel lot located north and northeast of the main facility building; specifically, the gravel lot will be maintained as an effective barrier to protect against direct contact with impacted subsurface soils as a result of erosion and normal use of the gravel surface cover. The gravel lot is to be inspected semi-annually to determine if it is functioning as intended and if maintenance is required. The MMP was submitted to, and approved by the US EPA, and included inspection and maintenance requirements for the gravel lot located north and northeast of the main facility building.

On February 25-27, 2019, thirty-one monitoring wells and piezometers were abandoned at and in the vicinity of the Collis facility. The monitoring wells and piezometers that were abandoned were no longer utilized, and, as agreed upon during the October 24, 2018 meeting at Region 7 between the USEPA and Collis, were to be properly abandoned to minimize long-term environmental liabilities. Abandonment activities are documented in the *Final Summary Report for 2019 Monitoring Well Abandonment Activities* (BB&E, 2019b).

Following the February 2019 monitoring well abandonment activities, the CMI-LTM WP was revised, and approved by the USEPA on 8 May 2019, to the Revised Final CMI-LTM WP in order to reflect the changes in monitoring wells present at and in the vicinity of the Collis site.

This report has been prepared in accordance with the Revised Final CMI-LTM WP (BB&E, 2019a) and the *Quality Assurance Project Plan* (QAPP; BB&E, 2014).

The objectives for field activities completed during execution of the 2019 first-half semi-annual LTM event consisted of the following:

- Groundwater elevations were taken from relevant monitoring wells and piezometers, as
 defined in the Revised Final CMI-LTM WP, in order to develop potentiometric surface
 maps to continue to monitor and evaluate the extent of the groundwater interface with
 Manufacturer's Ditch and groundwater flow direction.
- Groundwater samples were collected for analysis to monitor concentrations of contaminants of concern over time.
- Groundwater monitoring was conducted to observe natural attenuation parameters and
 concentrations of chlorinated volatile organic compounds (CVOCs). MNA parameters
 included methane/ethane/ethene, iron, manganese, chloride, sulfate, nitrate and nitrite;
 these MNA parameters were selected in order to demonstrate the status of the MNA
 remedy at the Site.
- A gravel lot inspection was conducted in accordance with the 2017 MMP (BB&E, 2017) to identify areas where the gravel was worn down, erosion was occurring (e.g., deep potholes), animals were burrowing, and/or ponding was occurring, and determine if any maintenance of the lot was required.

2019 FIRST-HALF SEMI-ANNUAL LTM MONITORING SUMMARY

This 2019 first-half semi-annual LTM summary report contains a summary of groundwater analytical results (**Table 1**), a summary of groundwater elevation results (**Table 2**), groundwater field parameter readings (**Table 3**), Vapor Intrusion Screening Level (VISL) comparisons (**Table 4**), MNA results (**Table 5**), detections summary figures (**Figures 3**, **4**, **5**, and **6**), potentiometric surface maps (**Figures 7** and **8**), groundwater concentration trend graphs for key monitoring wells (**Graphs 1**, **2**, and **3**), laboratory analytical data (**Attachment A**), field notes/forms (**Attachment B**), the gravel lot inspection (**Attachment C**), and the Annual Certification for Compliance with LUCs/ICs for 2018 (**Attachment D**).

The 2019 first-half semi-annual LTM activities are summarized below:

 Groundwater samples were collected from specific site monitoring wells, as described in the Revised Final CMI-LTM WP. Groundwater analytical results are summarized in Table 1, and sample locations are shown on Figure 2.

- Groundwater samples from the first saturated unit (a shallow unconfined aquifer) were collected from MW-38, MW-39, MW-50S, PZ-47 and PZ-48 and analyzed for volatile organic compounds (VOCs; U.S. EPA Method 8260).
- Groundwater samples from the second saturated unit (upper unconsolidated sediments and weathered bedrock) were collected from MW-34, MW-45, MW-47S, MW-50, and MW-56 and analyzed for VOCs (U.S. EPA Method 8260). Additionally, MW-34 was sampled and analyzed for MNA parameters (chloride, nitrate/nitrite, sulfate/sulfide, dissolved iron, dissolved manganese, methane, ethane, and ethene). Monitoring wells MW-34 and MW-45 were also sampled and analyzed for 1,4-dioxane (U.S. EPA Method 8260SIM).
- Groundwater samples from the third saturated unit (lower unconsolidated sediments and upper bedrock) were collected from MW-42 and MW-53 and analyzed for VOCs (U.S. EPA Method 8260), 1,4-dioxane (U.S. EPA Method 8260SIM), and MNA parameters (chloride, nitrate/nitrite, sulfate/sulfide, dissolved iron, dissolved manganese, methane, ethane, and ethene).
- A groundwater sample from the fourth saturated unit (bedrock) was collected from MW-43 and analyzed for VOCs (U.S. EPA Method 8260).
- Groundwater field parameters, including oxidation-reduction potential (ORP), dissolved oxygen (DO), specific conductivity, turbidity, and pH, were collected from monitoring wells during purging, and prior to sample collection, at approximately 5-minute intervals. Groundwater field parameters were collected to determine when stabilization had been achieved and a groundwater sample could be collected. A groundwater sample was collected when field parameters had stabilized for three successive readings or when 45 minutes of purging had been completed. Prior to sample collection, a final reading of the field parameters was recorded. The following stabilization criteria were used:
 - \pm 0.1 Standard Unit (S.U.) for pH
 - ±3 percent (%) for specific conductance (millisiemens/centimeter [mS/cm])
 - $_{\circ}$ ±10 millivolts (mV) for ORP
 - $_{\circ}$ ± 0.3 milligrams per liter (mg/L) for DO
 - ∘ ±0.5 Degrees Celsius (°C)
 - ±10% for turbidity values or less than (<) 50 Nephelometric Turbidity Units (NTUs)

Groundwater field parameters were used to enhance the dataset for evaluating the effectiveness of the MNA groundwater remedy in accordance with the *Natural Attenuation* of *Chlorinated Solvents in Groundwater: Principles and Practices* (Interstate Technology and Regulatory Council, 1999) guidance document.

• In accordance with the Revised Final CMI-LTM WP all purge water generated was disposed of directly at the waste water treatment plant inside the Collis Facility. All sampling gloves and other personal protective equipment was double-bagged and placed in an on-site municipal waste container for disposal.

DEVIATIONS FROM THE REVISED FINAL CMI-LTM WP

There were no deviations from the Revised Final CMI-LTM WP experienced during this 2019 first-half semi-annual LTM event.

GROUNDWATER ELEVATION SUMMARY

Monitoring wells/piezometers that are screened in four different saturated units, as described in the Revised Final CMI-LTM WP, were gauged during the 2019 first-half semi-annual LTM event. Potentiometric surface maps for the first and second saturated units are included in this report as **Figures 7** and **8**. Potentiometric surface maps were not prepared for the third or fourth saturated units as only two and one data points, respectively, are available for these saturated units. A summary of groundwater elevation and flow information is summarized below:

- Historically, groundwater in the first saturated unit, a shallow unconfined aquifer, flows northwest to north-northwest. Groundwater in the first saturated unit appears to vent to Manufacturer's Ditch. As shown on Figure 7, the groundwater flow direction in the first saturated unit, was consistent with historic observations.
- Historically, groundwater in the second saturated unit, the upper unconsolidated sediments
 and weathered bedrock, flows northwest. As shown on Figure 8, the groundwater flow
 direction in the second saturated unit was consistent with historic observations.
- Historically, based on previous potentiometric surface maps, groundwater in the third saturated unit, the lower unconsolidated sediments and weathered bedrock, flows northwest.

 Upon removal of expansion plugs, various monitoring wells were noted to have water slowly flowing to the top and/or over the top of casing indicating artesian conditions consistent with historic observations. Wells exhibiting artesian conditions during the 2019 first-half semi-annual LTM event are identified on Table 2.

A summary of groundwater elevations is included as **Table 2** and field notes and forms are provided for reference in **Attachment B**.

GROUNDWATER ANALYTICAL RESULTS

As specified in the Revised Final CMI-LTM WP, groundwater analytical results were compared to U.S. EPA MCLs or the most recent Regional Screening Level (RSLs), if no MCL exists, for the purposes of evaluating the effectiveness of the MNA groundwater remedy. In addition to the MCL or RSL comparison, per the Revised Final CMI-LTM WP, shallow groundwater analytical results for VOCs were also compared to target groundwater concentrations for VISLs. VOC results from the first and second saturated units have been compared to VISL target groundwater concentrations for commercial exposure, calculated using the U.S. EPA VISL Calculator last updated May 2018 (U.S. EPA, 2018). A summary of groundwater analytical results is provided in **Table 1**. Groundwater analytical results compared to VISL target groundwater concentrations for the first and second saturated units are shown on **Table 4**.

All samples were analyzed by ALS Laboratory Group located in Holland, Michigan (a National Environmental Laboratory Accreditation Program [NELAP] approved lab). A complete set of laboratory results is provided in **Attachment A**. Field notes and sample log forms are provided for reference in **Attachment B**.

Laboratory analytical results are summarized below.

VOCs

First Saturated Unit: Monitoring wells MW-38, MW-39, MW-50S, PZ-47, and PZ-48 were sampled and analyzed for VOCs. VOCs detected above screening criteria included cis-1,2-Dichloroethene (DCE) and vinyl chloride (VC).

Cis-1,2-DCE was detected above the MCL in MW-38 and MW-39. VC was detected above the MCL and VISL target groundwater concentration in MW-38, MW-39, and MW-50S.

Additional detections of VOCs in the first saturated unit include low level detections of acetone (MW-38, MW-39, PZ-47, and PZ-48), tert-butyl alcohol (MW-38, PZ-47, and PZ-48), chloromethane (PZ-47 and PZ-48), and 2-methylnaphthalene (PZ-48); all detections are below applicable USEPA MCLs or USEPA Tapwater RSLs. These VOCs have not historically been present at the site, and due to their low concentrations in numerous wells, are not anticipated to be indicative of site conditions. These detections are most likely due to cross-contamination, laboratory contamination or other interference. For those reasons, they are not included on the results tables or figures, but are indicated in the laboratory analytical reports in **Attachment 1**.

Analytical results for the first saturated unit are included on Table 1, Table 4, and Figure 3.

Second Saturated Unit: Monitoring wells MW-34, MW-45, MW-47S, MW-50, and MW-56 were sampled and analyzed for VOCs. VOCs detected above screening criteria included cis-1,2-DCE, TCE, and VC.

Cis-1,2-DCE was detected above the MCL in MW-45. VC was detected above both the MCL and VISL target groundwater concentration in MW-45 and MW-50. TCE was detected above both the MCL and VISL target groundwater concentration in MW-34, and above just the VISL target groundwater concentration in MW-45.

Additional detections of VOCs in the second saturated unit include low level detections of acetone (MW-34, MW-45, MW-47S, MW-50 and MW-56), tert-butyl alcohol (MW-45, MW-47S, and MW-50), and 2-methylnaphthalene (MW-47S and MW-56); all detections are below applicable USEPA MCLs or USEPA Tapwater RSLs. These VOCs have not historically been present at the site, and due to their low concentrations in numerous wells, are not anticipated to be indicative of site conditions. These detections are most likely due to cross-contamination, laboratory contamination or other interference. For those reasons, they are not included on the results tables or figures, but are indicated in the laboratory analytical reports included in **Attachment 1**.

Analytical results for the second saturated unit are included on **Table 1**, **Table 4**, and **Figure 4**. A groundwater concentration trend graph for MW-34 is included on **Graph 1**.

Third Saturated Unit: Monitoring wells MW-42 and MW-53 were sampled and analyzed for VOCs. VOCs detected above screening criteria included cis-1,2-DCE, TCE, and VC. All three

parameters were detected above the MCL in MW-42. No parameters exceeded screening criteria in MW-53.

Additional detections of VOCs in the third saturated unit include low level detections of acetone (MW-42 and MW-53), tert-butyl alcohol (MW-53), and 1,1,2-trichloroethane (MW-42); all detections are below applicable USEPA MCLs or USEPA Tapwater RSLs. These VOCs have not historically been present at the site, and due to their low concentrations in numerous wells, are not anticipated to be indicative of site conditions. These detections are most likely due to cross-contamination, laboratory contamination or other interference. For those reasons, they are not included on the results tables or figures, but are indicated in the laboratory analytical reports included in **Attachment 1**.

Per the Revised Final CMI-LTM WP, results from the third saturated unit were not compared to VISL target groundwater concentrations. Analytical results for the third saturated unit are included on **Table 1** and **Figure 5**. Groundwater concentration trend graphs for MW-42 and MW-53 are included on **Graph 2** and **Graph 3**, respectively.

Fourth Saturated Unit: Monitoring well MW-43 was sampled and analyzed for VOCs. There were no VOC detections exceeding the MCL.

Detections of VOCs in the fourth saturated unit include low level detections of acetone (MW-43); however, this detection is below applicable USEPA MCLs or USEPA Tapwater RSLs. Acetone has not historically been present at the site, and due to the low concentrations in numerous wells, is not anticipated to be indicative of site conditions. These detections are most likely due to cross-contamination, laboratory contamination or other interference. For those reasons, they are not included on the results tables or figures, but are indicated in the laboratory analytical reports included in **Attachment 1**.

Per the Revised Final CMI-LTM WP, results from the fourth saturated unit were not compared to VISL target groundwater concentrations. Analytical results for the fourth saturated unit are included on **Table 1** and **Figure 6**.

1,4-Dioxane

Select wells in the second and third saturated units were sampled for 1,4-dioxane. MW-34 and MW-45 (second saturated unit) and MW-42 and MW-53 (third saturated unit) were sampled for 1,4-dioxane; however, 1,4-dioxane was not detected in any of the groundwater samples during the 2019 first-half semi-annual LTM event. Analytical results are summarized in **Table 1**.

Vapor Intrusion

Groundwater samples collected from the first and second saturated unit were compared to VISL Target Groundwater Concentrations (**Table 4**). Sample results indicated that the first saturated unit had detections of VC that exceeded the VISL Target Groundwater Concentration and the second saturated unit had detections of TCE and VC that exceeded the VISL Target Groundwater Concentration; however, historic evaluation indicates that vapor intrusion is not a concern at the Site.

MONITORED NATURAL ATTENUATION (MNA) SUMMARY

MNA analyses was conducted during the 2019 first-half semi-annual LTM event in order to evaluate continued in-situ biodegradation via reductive dechlorination processes.

In accordance with the Revised Final CMI-LTM WP, MW-34, MW-42, and MW-53 were sampled for VOCs, MNA parameters (i.e., nitrate/nitrite, sulfate/sulfide, iron, manganese, methane, ethene, and ethane), and field parameters (dissolved oxygen [DO], oxidation reduction potential [ORP]), and pH). A detailed discussion of these parameters and relative favorability for in-situ biodegradation via reductive dechlorination is discussed below. A summary of environmental conditions supportive of reductive dechlorination for the three wells sampled during the 2019 first-half semi-annual LTM event has been included in **Table 5**.

Groundwater Field Parameters

DO is a measure of oxygen dissolved in a solution. Concentrations less than 0.5 mg/L are indicative of an environment potentially supportive of reductive dechlorination. All three wells (MW-34, MW-42, and MW-53) had concentrations exceeding 0.5 mg/L (1.59, 2.59, and 3.71 mg/L, respectively).

ORP is a measure of the electron activity and an indicator of the relative tendency of a solution to accept or transfer electrons. Favorable conditions for natural reductive dechlorination are less than

50 mV with less than -100 mV being optimal. MW-42 and MW-53 exhibited favorable conditions of -10.4 and -46.1 mV, respectively, while MW-34 was slightly out of favorable conditions with an ORP of 51.6 mV.

The optimal pH range for microbial activity is between 5 and 9. Biological activity is not likely to occur if the pH is below 5 or above 9. All three wells (MW-34, MW-42, and MW-53) exhibited favorable conditions with pH levels of 6.9, 7.03, and 7.06 units, respectively.

Sulfate Anions

Sulfate concentrations are monitored to evaluate the presence of alternate electron acceptors for microbial respiration. Sulfate was detected in all three wells including MW-34 (65,000 μ g/L), MW-42 (110,000 μ g/L), and MW-53 (35,000 μ g/L) at concentrations higher than the optimal level (<20,000 micrograms per liter [μ g/L]) for microbial activity. High sulfate levels may compete with the reductive dechlorination pathway.

Iron

Dissolved iron (i.e., ferrous iron) was detected in MW-42 (100 μ g/L), MW-53 (180 μ g/L), but concentrations did not indicate ideal conditions. Favorable concentrations of iron for in-situ reductive dechlorination are typically greater than (>) 1,000 μ g/L.

Nitrate/Nitrite

Nitrogen, measured as nitrate and nitrite, was not detected in MW-42 or MW-53 and was detected in MW-34 at a concentration of 820 ug/L. Favorable conditions are generally less than 1,000 μ g/L.

Degradation-Daughter Products

Cis-1,2-DCE, trans-1,2-DCE, 1,1-DCE, and VC are degradation products of TCE. The presence of these degradation daughter products are positive indications that reductive dechlorination is occurring. VC is the intermediate degradation step prior to the generation of ethene, followed by ethane. All four daughter products (with the exception of 1,1-DCE in MW-34 and MW-53) were observed in all three wells (MW-34, MW-42, and MW-53).

As specified in the Revised Final CMI-LTM WP, groundwater concentration trend graphs were created for key monitoring wells (MW-34, MW-42, and MW-53) in order to evaluate the historical

concentration trends of TCE and the degradation-daughter products over time. These concentration trend graphs are included as **Graph 1**, **Graph 2**, and **Graph 3**.

Dissolved Gases

The presence of the degradation products ethene and ethane tend to indicate that the complete destruction of TCE via the reductive pathway is occurring. Ethene and ethane were not detected in any of the wells (MW-34, MW-42, and MW-53). Elevated methane levels (>500 µg/L) are generally indicative of strong reducing conditions supportive of reductive dechlorination. Methane was detected in all three monitoring wells (MW-34, MW-42, and MW-53); however, concentrations were not suggestive of strong reducing conditions (>500 µg/L).

2019 FIRST-HALF SEMI-ANNUAL LTM EVENT CONCLUSIONS

VOCs

Based on the groundwater monitoring results from the 2019 first-half semi-annual LTM event, VOCs continue to exceed MCLs in certain wells as shown on **Table 1**. Specifically, cis-1,2-DCE, TCE, and VC continue to be detected in groundwater above MCLs at the Site. **Figures 3**, **4**, **5**, and **6** show VOCs detected above MCLs for 2019.

In the first saturated unit, cis-1,2-DCE was detected above its MCL in two monitoring wells (MW-38 and MW-39) and VC was detected above its MCL in three monitoring wells (MW-38, MW-39, and MW-50S). In the second saturated unit, cis-1,2-DCE was detected above its MCLs in MW-45, TCE was detected above its MCL in MW-34, and VC was detected above its MCL in MW-50. In the third saturated unit, cis-1,2-DCE, TCE, and VC were detected above their respective MCLs in MW-42. In the fourth saturated unit, there were no VOC detections exceeding their respective MCLs. The constituent 1,4-dioxane was not detected in any of the samples.

The additional detections of VOCs at the site include low level detections of acetone, tert-butyl alcohol, chloromethane, 1,1,2-trichloroethane, and 2-methylnaphthalene; all detections are below applicable USEPA MCLs or USEPA Tapwater RSLs. These VOCs have not historically been present at the site, and due to their low, estimated, concentrations in multiple wells, are not anticipated to be indicative of site conditions. These detections are most likely due to cross-contamination, laboratory contamination or other interference. For those reasons, they are not

included on the results tables or figures, but are indicated in the laboratory analytical reports in **Attachment 1**. These will continue to be monitored during the next semi-annual LTM event.

Monitored Natural Attenuation

Analytical results and groundwater field parameters from the 2019 first-half semi-annual LTM event were indicative of reductive dechlorination of TCE as evidenced by detections of TCE daughter products including trans-1,2-DCE, cis-1,2-DCE, 1,1-DCE, VC, ethene, ethane, and methane. Measured field parameters (ORP, pH, and DO) were also indicative of reducing conditions conducive to dechlorination.

GRAVEL LOT INSPECTION

As required by the MMP, the gravel lot was thoroughly graded in October 2017 and, at the request of EPA, a survey of the gravel lot was conducted on May 15, 2018 in order to establish a benchmark condition for which semi-annual inspections will be compared to. A figure showing the gravel lot area to be inspected is included in **Attachment C**.

In accordance with the MMP (BB&E, 2017), the 2019 first half semi-annual gravel lot inspection was conducted on April 8, 2019 to evaluate if it is functioning as intended (i.e., to protect against direct contact with impacted subsurface soils) and determine if any maintenance of the lot was required. The gravel lot was inspected for areas where the gravel had been worn down, and evidence of erosion, burrowing animals, poor drainage or ponding, and any deep potholes (areas with no gravel cover). There were no necessary repairs or areas where replacement of the gravel was necessary during the April 2019 inspection. In accordance with the MMP (BB&E, 2017), if repairs or replacement of the gravel cover are determined to be necessary during any future semi-annual inspections, repairs will be completed within 60 calendar days to continue to protect against exposure to underlying contaminants in the subsurface soils.

The inspection form and photographs taken during the inspection to document the overall condition of the gravel cover throughout the lot are included in **Attachment C**.

FINANCIAL ASSURANCE MECHANISM (FAM)

Based on LTM sampling results to date, site conditions remain unchanged, which does not warrant any updates to the FAM; therefore, the FAM remains unchanged since its preparation in 2018. The

FAM will be re-evaluated for potential updates following the 2020 first semi-annual sampling event.

RECOMMENDATIONS

Groundwater monitoring and gravel cap inspections are recommended to be continued on a semi-annual basis in accordance with the Revised Final CMI-LTM WP for a period of five years. The semi-annual LTM sampling and analysis will be conducted in accordance with the U.S. EPA approved QAPP (BB&E, 2014). Gravel cap inspections will be conducted in accordance with the MMP (BB&E, 2017). As noted above, following the five years of semi-annual sampling, an evaluation will be conducted to determine the effectiveness of the MNA groundwater remedy. The evaluation results, with recommendations, will be submitted to U.S. EPA for review. The next semi-annual LTM event is currently scheduled for October 2019.

If you have any questions or comments regarding this report, please contact me at 248-489-9636 ext. 317 or clang@bbande.com.

Sincerely,

Cindy Lang

Project Manager

BB&E, Inc.

cc:

Mr. Brian Calhoun – Collis/SSW

Mr. Charlie Denton - Barnes & Thornburg, LLP

Enclosures:

Figure 1 – Site Location Map

Figure 2 – Site Features Map

Figure 3 – Detections Summary First Saturated Unit April 2019

Figure 4 – Detections Summary Second Saturated Unit April 2019

Figure 5 – Detections Summary Third Saturated Unit April 2019

Figure 6 – Detections Summary Fourth Saturated Unit April 2019

Figure 7 – Potentiometric Surface Map First Saturated Unit April 2019

Figure 8 – Potentiometric Surface Map Second Saturated Unit April 2019

Table 1 – Groundwater Data Summary

Table 2 – Water Elevations Summary

Table 3 – Groundwater Field Parameter Readings

Table 4 – Vapor Intrusion Screening

Table 5 – LTM Groundwater MNA Results

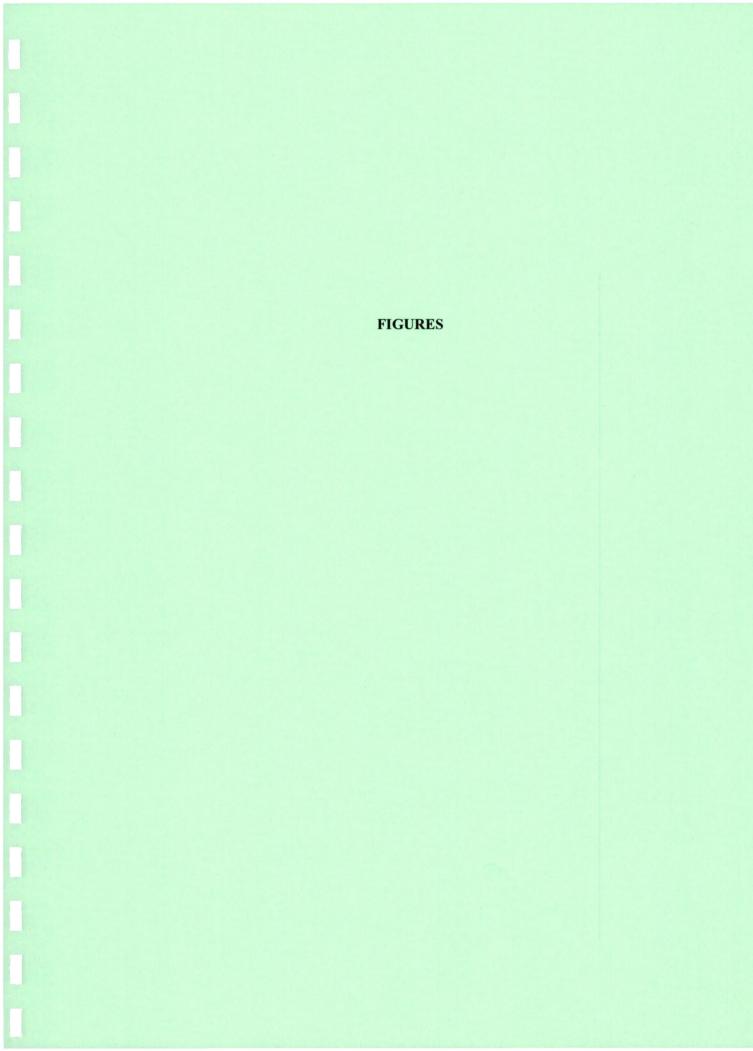
Graph 1 – MW-34 Concentration Trends

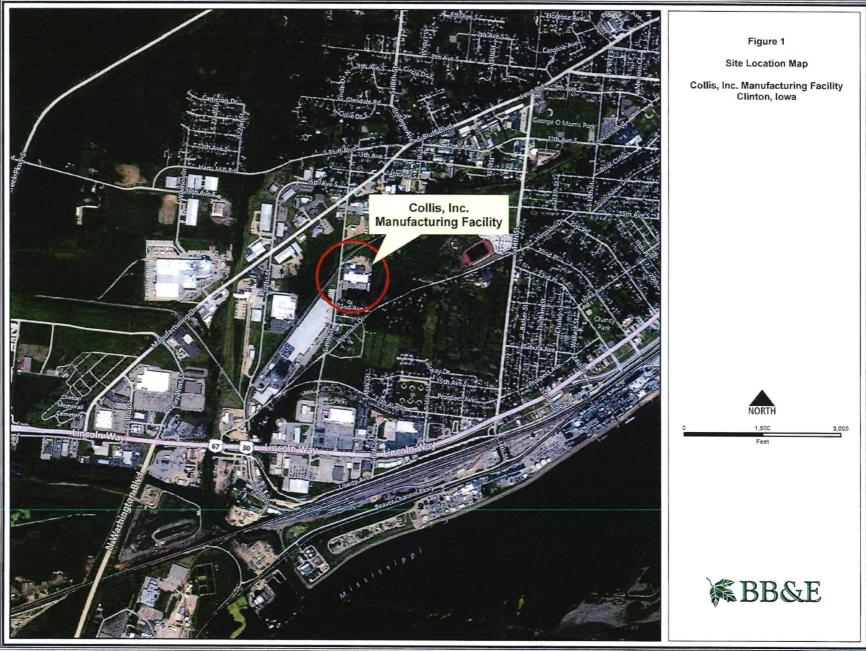
Graph 2 – MW-42 Concentration Trends

Graph 3 – MW-53 Concentration Trends

Attachment A – Laboratory Analytical Data

Attachment B - Field Notes


Attachment C – Gravel Lot Inspection


Attachment D - Annual Certification for Compliance with LUCs/ICs for 2018

H.\jobs\SSW\Collis, IA\02028025 - 2019 Long-Term Monitoring\lst Semi-annual Sampling Event\05 - Report\SA 1 2019 LTM Summary Report_FINAL.docx Date/Time: 9/11/2019 8:34 AM Author/Reviewer: KVB/CML/TEB

REFERENCES

- BB&E, Inc. (BB&E), 2014. Final RCRA Corrective Measures Activities Quality Assurance Project Plan. August.
- BB&E, 2017. Final RCRA Corrective Measure Activities Media Management Plan. December.
- BB&E, 2018. Final Corrective Measures Study Report. April.
- BB&E, 2019a. Revised Final Corrective Measures Implementation LTM Groundwater Monitoring Work Plan. April.
- BB&E, 2019b. Final Summary Report for 2019 Monitoring Well Abandonment Activities. May.
- Interstate Technology and Regulatory Council, 1999. *Natural Attenuation of Chlorinated Solvents in Groundwater: Principles and Practices*. September.
- United States Environmental Protection Agency (U.S. EPA), 2018. *Vapor Intrusion Screening Level Calculator*. Retrieved from: https://www.epa.gov/vaporintrusion/vapor-intrusion-screening-level-calculator. May.

LTM Monitoring Well Locations

Collis, Inc. Manufacturing Facility Clinton, Iowa

Legend:

- Manufacturer's Ditch
 - Property Boundary (Approximate)

Monitoring Wells

- First Saturated Unit
- Second Saturated Unit
- Third Saturated Unit
- Fourth Saturated Unit
- LTM Monitoring Well

Note:

LTM = long term monitoring

250

500

Feet

Service Layer Credits: State of Iowa 2016 Spring Imagery KVB 4/17/2019

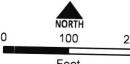
Conserved - 2019 Find Monthly India 2 - Site Features.mxd

ath: H:\IT\GIS\SSW\Collis\figures\02028025

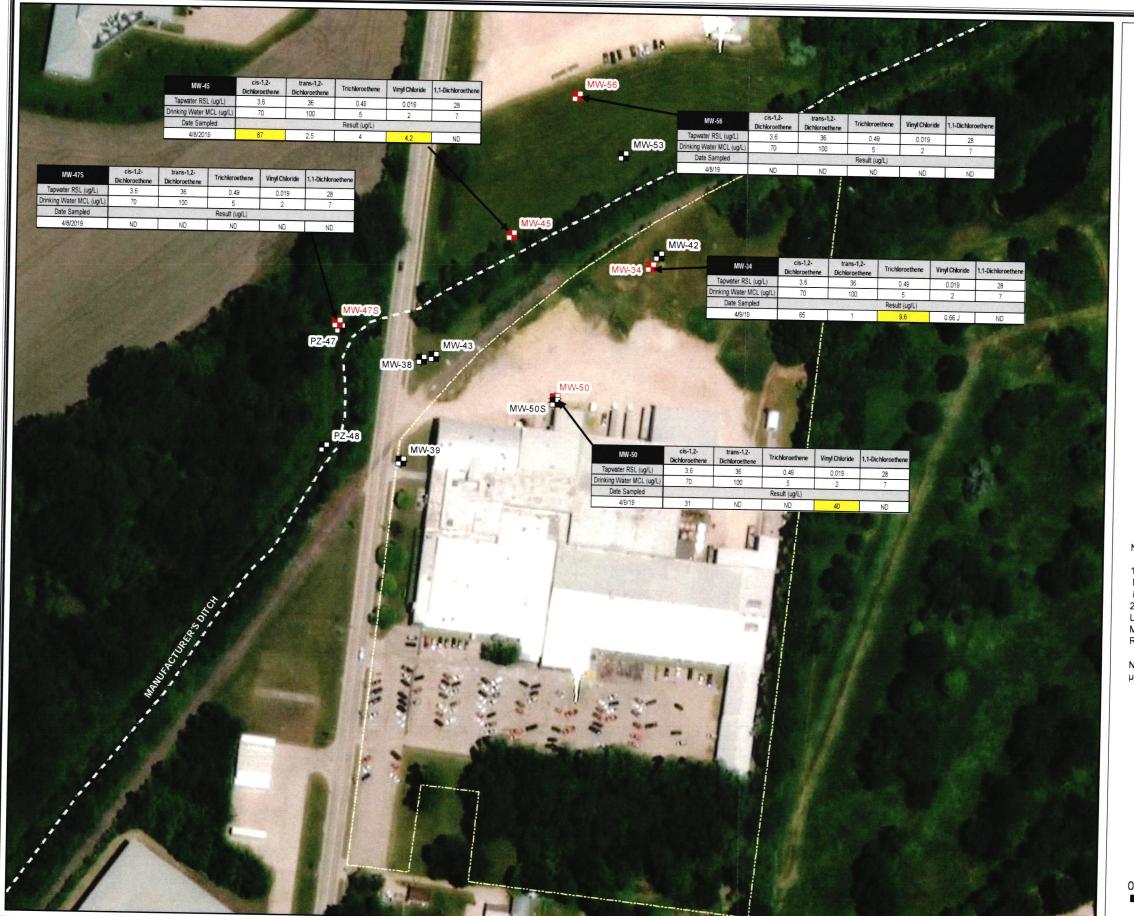
Detections Summary First Saturated Unit **April 2019**

Collis, Inc. Manufacturing Facility Clinton, Iowa

Legend:


- Wells Sampled Unit 1
- ♥ Wells Not Sampled Unit 1 Manufacturer's Ditch Property Boundary (Approximate)

NOTES:


- 1. Only results from monitoring wells/piezometers sampled during the Corrective Measures Implementation (CMI) Long Term Monitoring (LTM)
- corrective Measures Implementation (CMI) Long Term Monitoring (LTMI) are included on this figure.

 2. Yellow highlighting indicates exceedance of United States Environmental Protection Agency (USEPA) Maximum Contaminant Level (MCL) or USEPA November 2018 Tapwater Regional Screening Level (RSL) Criteria, if no MCL is available.

ND = not detected μg/L = micrograms per liter

Detections Summary Second Saturated Unit April 2019

Collis, Inc. Manufacturing Facility Clinton, Iowa

Legend:

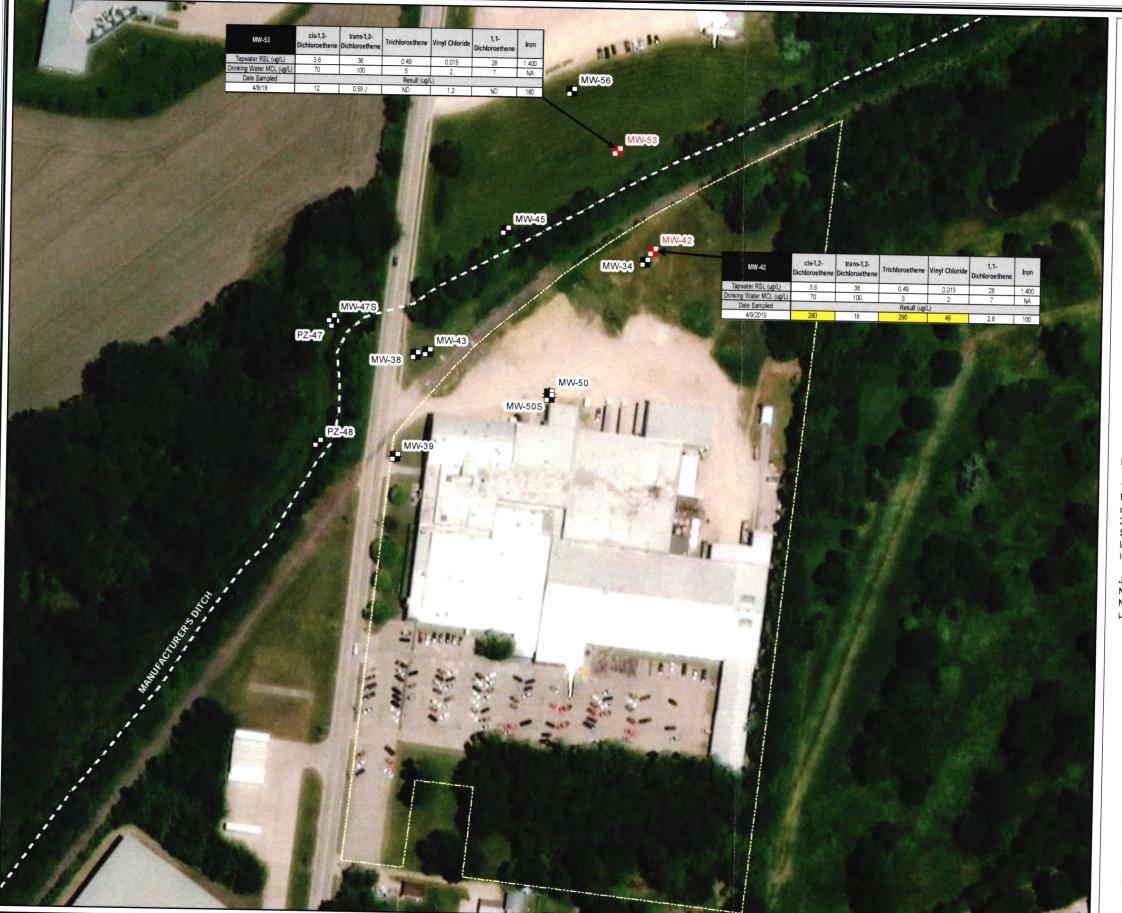
Location Sampled

Location Not Sampled Manufacturer's Ditch

Property Boundary (Approximate)

NOTES:

- Only results from monitoring wells sampled during the Corrective Measures Implementation (CMI) Long Term Monitoring (LTM) are included on this figure.
- Measures Implementation (CMI) Long Term Monitoring (LTM) are included on this figure.

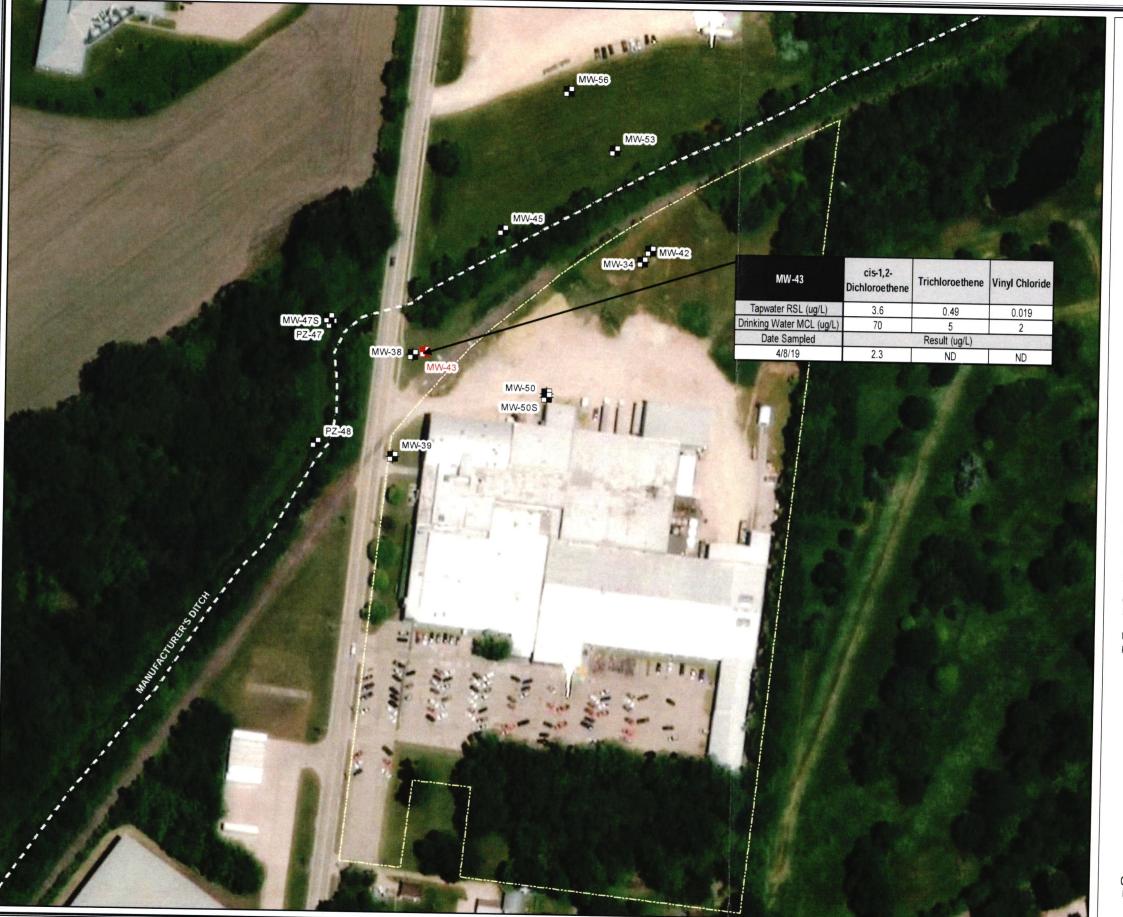

 2. Yellow highlighting indicates exceedance of November 2018 United States Environmental Protection Agency (USEPA) Maximum Contaminant Level (MCL) or USEPA Tapwater Regional Screening Level (RSL) Criteria, if no MCL is available.

ND = not detected µg/L = micrograms per liter

Service Layer Credits: Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community KVB - 7/2/2018

Detections Summary Third Saturated Unit **April 2019**

Collis, Inc. Manufacturing Facility Clinton, Iowa


- Location Sampled
- Location Not Sampled Manufacturer's Ditch
 - Property Boundary (Approximate)

NOTES:

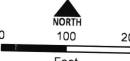
- Only results from monitoring wells sampled during the Corrective Measures Implementation (CMI) Long Term Monitoring (LTM) are included on this figure.
- 2. Yellow highlighting indicates exceedance of the November 2018 United States Environmental Protection Agency (USEPA) Maximum Contaminant Level (MCL) or USEPA Tapwater Regional Screening Level (RSL) Criteria, if no MCL is available.
- J = the reported value is an estimate NA = not available
- ND = not detected
- µg/L = micrograms per liter

Service Layer Credits: Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community KVB - 4/18/2019

Detections Summary Fourth Saturated Unit **April 2019**

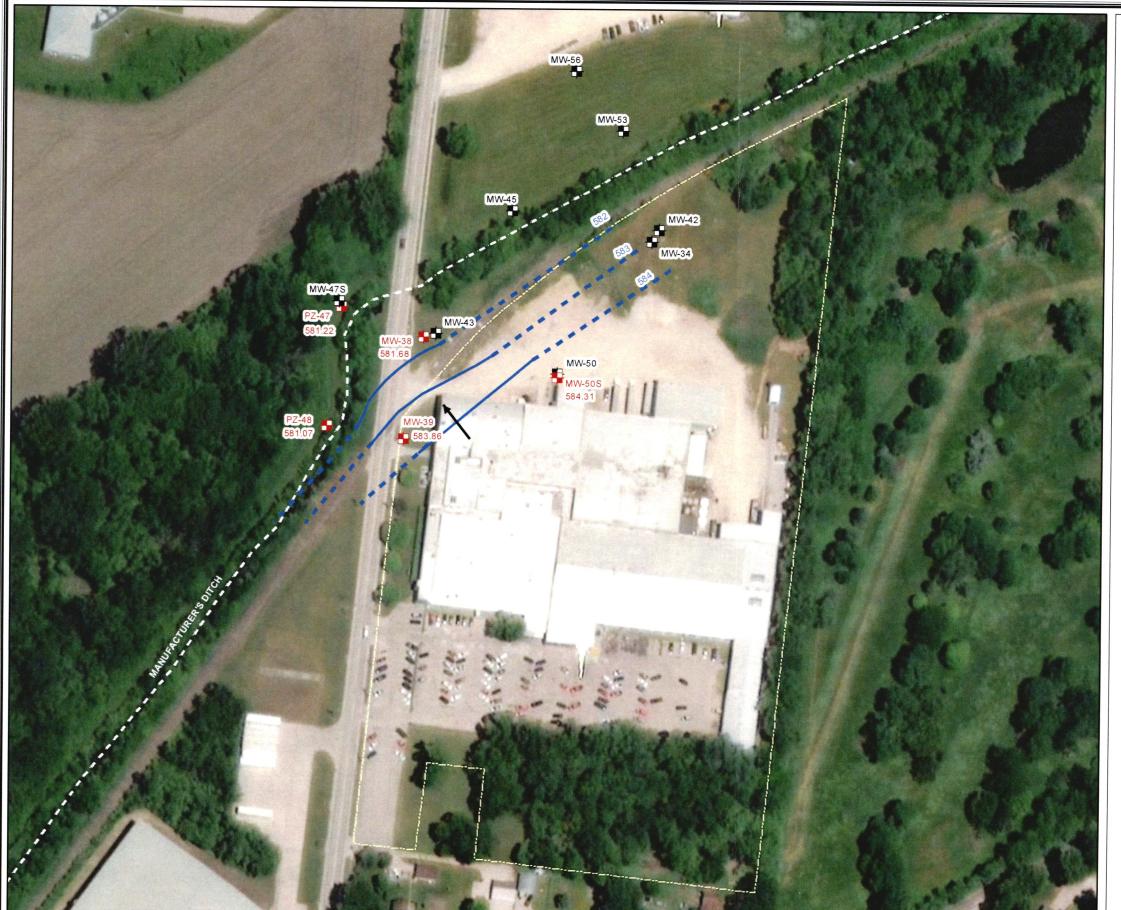
Collis, Inc. Manufacturing Facility Clinton, Iowa

Legend:


- Location Sampled
- Location Not Sampled Manufacturer's Ditch

Property Boundary (Approximate)

- 1. Only results from monitoring wells sampled during the Corrective Measures Implementation (CMI) Long Term Monitoring (LTM) are included on this figure.


 2. Yellow highlighting indicates exceedance of the November 2018 United States Environmental Protection Agency (USEPA) Maximum Contaminant Level (MCL) or USEPA Tapwater Regional Screening Level (RSL) Criteria, if no MCL is available.

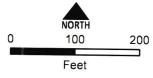
ND = not detected μg/L = micrograms per liter

Service Layer Credits: Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community

Potentiometric Surface Map First Saturated Unit April 2019

Collis, Inc. Manufacturing Facility Clinton, Iowa

Legend:


- Monitoring Well/Piezometer Location (Elevations included)
- Monitoring Well/Piezometer Location (Elevations excluded)
- --- Water Table Elevation (dashed where inferred)
- → Groundwater Flow Direction

 Manufacturer's Ditch

 Property Boundary (Approximate)

NOTES:

- Monitoring wells shaded in black were excluded from use in generating this potentiometric surface map due to belonging to a different hydrological unit.
- 2. Monitoring wells MW-42 and MW-53 are located in the third saturated unit and MW-43 belongs to the deep bedrock hydrological unit. A separate figure was not created for these hydrological units as data from two wells is inadequate for accurate creation of groundwater contours.
- 3. Due to limitations of software interpolation, this drawing is intended to be used as an overview of the general groundwater flow conditions at the site. Groundwater contours may not pass through the included monitoring wells due to the display of groundwater contours at a constant interval. Contour placement represents an interpolation between two or more monitoring wells with known water levels, observed at the time of sampling; therefore, contours are inferred.
- 4. Groundwater contours developed using ArcGIS Desktop 10.6 Spatial Analyst Extension.

Service Layer Credits: Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community Esri, HERE, DeLorme, MapmyIndia, © OpenStreetMap contributors, and the GIS user community KVB - 4/18/2019

Potentiometric Surface Map Second Saturated Unit April 2019

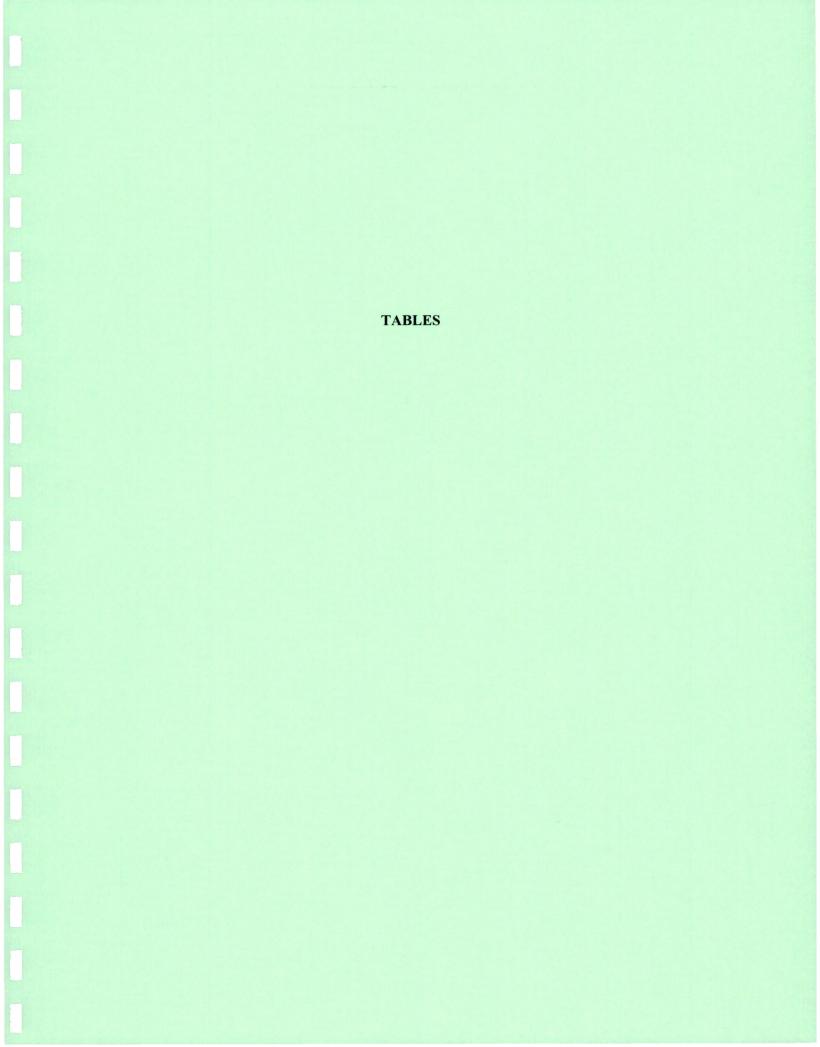
Collis, Inc. Manufacturing Facility Clinton, Iowa

Legend

- Monitoring Well/Piezometer Location (Elevations included)
- Monitoring Well/Piezometer Location (Elevations excluded)
- Potentiometric Surface (dashed where inferred)
- → Groundwater Flow Direction
 - Manufacturer's Ditch
- Property Boundary (Approximate)

NOTES:

- 1. Monitoring wells shaded in black were excluded from use in generating this potentiometric surface map either due to belonging to a different hydrological unit, or due to artesian flow conditions. Wells with artesian flow conditions in the second saturated unit are identified as MW-45
- 2. Monitoring wells MW-42 and MW-53 are located in the third saturated unit and MW-43 belongs to the deep bedrock hydrological unit. A separate figure was not created for these hydrological units as data from two wells is inadequate for accurate creation of groundwater contours.
- 3. Due to limitations of software interpolation, this drawing is intended to be used as an overview of the general groundwater flow conditions at the site. Groundwater contours may not pass through the included monitoring wells due to the display of groundwater contours at a constant interval. Contour placement represents an interpolation between two or more monitoring wells with known water levels, observed at the time of sampling; therefore, contours are inferred.
- 4. Groundwater contours developed using ArcGIS Desktop 10.6 Spatial Analyst Extension.



100 2

200

BB&E

Feet

TABLE 1 GROUNDWATER DATA SUMMARY SSW COLLIS CLINTON, IA

		F	irst Satura	ted Ground	water Unit			a Mary de la companya		
	PARAMETERS (mg/L)	cis-1,2-DCE	trans-1,2- DCE	TCE	Vinyl Chloride	1,1-DCE	Lead	1,4-Dioxane	Methane	Ethane
	CAS#	156-59-2	156-60-5	79-01-6	75-01-4	75-35-4	7439-92-1	123-91-1	74-82-8	74-84-0
	EPA NOVEMBER 2018 RSL TAPWATER SCREENING CRITERIA (mg/L)	0.0036	0.036	0.00049	0.000019	0.028	0.015	0.00046	NA	NA
MONITORING WELL	EPA DRINKING WATER MCL (mg/L)	0.07	0.100	0.005	0.002	0.007	0.015	NA	NA	NA
MW-38	10/15/14	0.110	0.0070	ND	0.093	ND	NS	NS	NS	NS
	3/19/15	0.10	0.0052	ND	0.074	ND	NS	NS	NS	NS
	5/13/15	0.110	0.0053	ND	0.088	ND	NS	NS	NS	NS
	9/18/15	0.100	0.0055	ND	0.069	ND	NS	NS	NS	NS
	9/29/16	0.099	0.0054	ND	0.084	ND	NS	NS	NS	NS
	12/15/16	0.088	0.0032	ND	0.028	ND	NS	NS	NS	NS
	2/28/17	0.087	0.0032	ND	0.084	ND	NS	NS	NS	NS
	5/4/17	0.12	0.0077	ND	0.081	ND	NS	NS	NS	NS
	6/19/18	0.12	0.0052	ND	0.082	ND	NS	NS	NS	NS
	10/1/18	0.13	0.0056	ND	0.097	ND	NS	NS	NS	NS
MW-39	4/8/19	0.10	0.0032	ND	0.055	ND 0.0036	NS	NS NC	NS	NS
MAA-28	10/14/14 3/19/15	0.38 0.3	0.024 0.017	ND ND	0.16 0.096	0.0026 0.0018	NS NS	NS NS	NS NS	NS NS
	5/13/15	0.33	0.017	ND	0.096	0.0018	NS NS	NS NS	NS NS	NS NS
	9/18/15	0.25	0.016	ND	0.086	0.0018	NS NS	NS NS	NS	NS
	9/29/16	0.19	0.015	ND	0.082	0.0019	NS	NS	NS	NS
	12/15/16 ¹	NS	NS	NS	NS	NS	NS	NS	NS	NS
	3/2/17	0.26	0.011	ND	0.065	0.0012	NS	NS NS	NS	NS
	5/4/17	0.27	0.011	ND	0.093	0.0012	NS	NS NS	NS	NS
	6/19/18	0.29	0.016	ND	0.085	0.0019	NS	NS	NS	NS
	6/19/18 DUP	0.26	0.016	ND	0.074	0.0013	NS	NS	NS	NS
	10/2/18	0.21	0.011	ND	0.058	0.0012	NS	NS	NS	NS
	4/9/19	0.21	0.0088	ND	0.075	0.001	NS	NS	NS	NS
MW-50S	10/13/14	ND	ND	ND	0.0068	ND	NS	NS	NS	NS
	3/18/15	0.0056	ND	ND	0.046	ND	NS	NS	NS	NS
	5/13/15	0.0079	ND	ND	0.072	ND	NS	NS	NS	NS
	9/17/15	0.0086	ND	ND	0.075	ND	NS	NS	NS	NS
	9/29/16	0.0068	ND	ND	0.042	ND	NS	NS	NS	NS
	12/15/16	0.0098	ND	ND	0.043	ND	NS	NS	NS	NS
	3/1/17	0.0084	ND	ND	0.025	ND	NS	NS	NS	NS
	3/1/17 DUP	0.0088	ND	ND	0.027	ND	NS	NS	NS	NS
	5/4/17	0.015	ND	ND	0.052	ND	NS	NS	NS	NS
	6/20/18	0.0081	ND	ND	0.045	ND	NS	NS	NS	NS
	10/2/18	0.0058	ND	ND	0.030	ND	NS	NS	NS	NS
	4/9/19	0.0077	ND	ND	0.037	ND	NS	NS	NS	NS
PZ-47	3/12/12	NS	NS	NS	NS	NS	3.9	NS	NS	NS
	6/12/12	NS	NS	NS	NS	NS	1.1	NS	NS	NS
	10/13/14 ²	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/16/15	NS	NS	NS	NS	NS	0.098	NS	NS	NS
	9/28/16	ND	ND	ND	ND ND	ND	NS	NS NC	NS	NS
	12/13/16	ND	ND	ND	ND ND	ND	NS	NS NS	NS NS	NS
	3/2/17 5/2/17	ND ND	ND ND	ND ND	ND ND	ND ND	NS NS	NS NS	NS NS	NS NS
	5/2/17 6/18/18	ND ND	ND ND	ND	ND ND	ND	NS NS	NS NS	NS	NS
	10/1/18	ND	ND ND	ND	ND ND	ND ND	NS NS	NS NS	NS NS	NS NS
	10/1/18 DUP	ND	ND ND	ND	ND ND	ND	NS	NS NS	NS	NS
	4/8/19	ND	ND ND	ND	ND ND	ND	NS	NS NS	NS	NS
PZ-48	9/28/16	ND	ND	ND	ND ND	ND	NS	NS	NS	NS
	12/13/16	ND	ND	ND	ND ND	ND	NS	NS	NS	NS
	3/2/17	ND	ND	ND	ND ND	ND	NS	NS	NS	NS
	5/2/17	ND	ND	ND	ND	ND	NS	NS	NS	NS
	6/18/18	ND	ND	ND	ND ND	ND	NS	NS	NS	NS
	10/1/18	ND	ND	ND	ND	ND	NS	NS	NS	NS
	4/8/19	ND	ND	ND	ND	ND	NS	NS	NS	NS

Notes:

Exceeds EPA Region VI Drinking Water MCLs or November 2018 (most current) Tapwater RSLs (Target Risk=1E-06, Hazard Quotient=0.1), if no MCL exists.

Only compounds that were detected in one or more samples are shown in the table.

Phase I, II, and III detections are also shown on this table. Phase I was conducted in March, June, September, and November 2012. Phase II was conducted October 2014, March, May, and September 2015. Phase III was conducted September and December 2016, February/March and May 2017. The 2018 first-semiannual LTM event was conducted June 2018 and the second semi-annual LTM event was conducted October 2018. The 2019 first semi-annual LTM event was conducted April 2019. mg/L = milligrams per liter

CAS - unique numerical identifier assigned by Chemical Abstracts Service (CAS)

DCE - Dichloroethene

EPA - United States Environmental Protection Agency

MCL - Maximum Contaminant Level MW - Monitoring Well

RSL - Regional Screening Level NA - Not Available

ND - Non-Detect

NS - Not Sampled PZ - Piezometer

¹ Not sampled due to inclement weather.

² PZ-47 was damaged and could not be sampled.

					Seco	nd Saturated	Groundwate	r Unit							
	PARAMETERS (mg/L)	cis-1,2-DCE	trans-1,2-DCE	TCE	Vinyl Chloride	1,1-DCE	1,4-Dioxane	Methane	Ethane	Ethene	Iron	Manganese	Chloride	Sulfate	Nitrogen, Nitrate-Nitri
	CAS#	156-59-2	156-60-5	79-01-6	75-01-4	75-35-4	123-91-1	74-82-8	74-84-0	74-85-1	7439-89-6	7439-96-5	10043-52-4	18785-72-3	NA
	EPA NOVEMBER 2018 RSL TAPWATER SCREENING CRITERIA (mg/L)	0.0036	0.036	0.00049	0.000019	0.028	0.00046	NA	NA	NA	1.40	NA	NA	NA	NA
MONITORING WELL	EPA DRINKING WATER MCL (mg/L)	0.07	0.100	0.00500	0.0020	0.007	NA	NA	NA	NA	NA	NA	NA	NA	10
MW-34	3/16/12	0.091	0.0033	0.0170	ND	ND	NS	0.13	0.011	NS	NS	NS	NS	NS	NS
	6/13/12	0.1	0.0037	0.0270	0.00690	ND	NS	NS	0.0024	NS	NS	NS	NS	NS	NS
	9/26/2012	0.039	0.0018	0.0200	ND	ND	NS	0.24	0.013	NS	NS	NS	NS	NS	NS
	11/30/12	0.033	0.0013	0.0160	ND ND	ND	NS	ND	ND	NS	NS	NS	NS	NS	NS
	10/17/14	0.084	0.0031	0.0230	0.00950	ND	ND ND	0.19	0.012	ND	0.14	0.33	72	69	0.028
	3/19/15	0.09	0.0029	0.0210	0.00670	ND	ND	0.15	0.011	ND	ND	0.27	68	78	0.12
	5/13/15	0.089	0.0026	0.0170	0.02000	ND	ND	0.28	0.017	0.00091 J	ND	0.29	78	78	ND
	9/17/15	0.11	0.0035	0.0280	0.00400	ND	0.00071	0.24	0.012	ND	0.02 J	0.44	68	75	0.019
	9/29/16	0.1	0.0035	0.0240	0.00460	ND	ND	0.38	0.02	ND	0.051 J	0.51	80	77	ND
	12/15/16	0.12	0.0036	0.0230	0.00230	ND	ND	0.21	0.011	ND	0.03 J	0.35	60	68	0.015
	12/15/2016 DUP	0.13	0.0036	0.0240	0.00260	ND	ND	0.22	0.011	ND	0.018 J	0.38	42	68	ND
	3/1/17	0.12	0.0021	0.0170	0.00270	0.00045 J	ND ND	0.18	0.012	ND	0.0059 J	0.074	77	74	0.033
	5/4/17	0.12	0.0040	0.0140	0.01500	ND	ND ND	0.32	0.02	ND	0.055 J	0.75	130	100	ND
	5/4/2017 DUP	0.12	0.0040	0.0130	0.01400	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS
	6/19/18	0.12	0.0024	0.0160	0.00240	ND	ND ND	0.23	0.016	ND	0.033 J	0.69	77	71	ND.
	10/1/18	0.086	0.0024	0.0160	0.00150	0.00067 J	ND ND	0.19	0.017	0.0026 J	0.019 J	0.51	45	68	ND
	4/9/19	0.065	0.0031	0.0096	0.00066 J	ND	ND ND	0.044	ND	ND ND	ND ND	0.12	75	65	0.82
MW-45	03/16/12	0.003	0.0010	0.0030	ND	ND	NS	ND	ND	NS	NS	NS	NS	NS	NS
MVV-45	06/13/12	0.015	ND ND	0.00420	ND ND	ND	NS NS	NS	ND ND	NS	NS	NS NS	NS	NS	NS
	09/26/12	0.015	ND ND	0.00350	ND ND	ND	NS I	0.025	ND ND	NS NS	NS NS	NS NS	NS	NS	NS.
		0.01	ND ND	0.00350	ND ND	ND	NS NS	ND	ND	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
	11/30/12	0.032	0.0013	0.00520	ND ND	ND	ND ND	NS	NS NS	NS NS	NS	NS NS	NS NS	NS NS	NS.
	10/16/14		0.0013 ND	0.00320	ND ND	ND	ND ND	NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
	03/18/15	0.011	0.00096 J	0.00590	ND ND	ND	ND ND	NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS.
	05/12/15	0.02	100000000000000000000000000000000000000		ND ND	ND	ND ND	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
	09/15/15	0.023	ND	0.00460		ND	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
	09/28/16	0.084	0.0029	0.00530	0.00420			NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
	9/28/16 DUP	0.083	0.0028	0.00530	0.00420	ND	NS					200	0.00		
	12/14/16	0.031	ND	0.00310	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS
	12/14/16 DUP	0.035	ND	0.00430	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS
	02/28/17	0.019	0.00081 J	0.00480	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS
	05/04/17	0.067	0.00250	0.00620	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS
	06/19/18	0.048	0.0015	0.00420	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS
	10/2/18	0.04	0.0014	0.00400	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS
	4/8/19	0.087	0.0025	0.00400	0.0042	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS

Exceeds EPA Region VI Drinking Water MCLs or November 2018 (most current) Tapwater RSLs (Target Risk=1E-06, Hazard Quotient=0.1), if no MCL exists.

Not sampled due to inclement weather.

Only compounds that were detected in one or more samples are shown in the table.

Phase I, II, and III detections are shown on this table. Phase I was conducted in March, June, September, and November 2012. Phase II was conducted October 2014, March, May, and September 2015. Phase III was conducted September and December 2016, February/March and May 2017. The 2018 first semi-annual LTM event was conducted June 2018 and the second semi-annual LTM event was conducted April 2019.

mg/L = milligrams per liter
CAS - unique numerical identifier assigned by Chemical Abstracts Service (CAS)

CAS - unique numerical identifier assigned by Chemical DCE - Dichloroethene EPA - United States Environmental Protection Agency MCL - Maximum Contaminant Level MW - Monitoring Well RSL - Regional Screening Level NA - Not Available

ND - Non-Detect NS - Not Sampled

PZ - Piezometer

	《新华美国》,"中国国际国际国际国际国际																
	PARAMETERS (mg/L)	cis-1,2-DCE	trans-1,2-DCE	TCE	Vinyl Chloride	1,1-DCE	1,4-Dioxane	Methane	Ethane	Ethene	Iron	Manganese	Chloride	Sulfate	Nitrogen, Nitrate-Nitrite		
	CAS#	156-59-2	156-60-5	79-01-6	75-01-4	75-35-4	123-91-1	74-82-8	74-84-0	74-85-1	7439-89-6	7439-96-5	10043-52-4	18785-72-3	NA		
	EPA NOVEMBER 2018 RSL TAPWATER SCREENING CRITERIA (mg/L)	0.0036	0.036	0.00049	0.000019	0.028	0.00046	NA	NA	NA	1.40	NA	NA	NA	NA		
MONITORING WELL	EPA DRINKING WATER MCL (mg/L)	0.07	0.100	0.00500	0.0020	0.007	NA	NA	NA	NA	NA	NA	NA	NA	10		
MW-47S	5/5/10	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS		
	3/14/12	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS		
	6/12/12	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS		
	10/14/14	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS		
	3/16/15	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS		
	5/11/15	ND	ND ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS		
	9/15/15	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS		
	9/28/16	ND	ND ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS		
	12/15/16 ¹	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS		
	2/28/17	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS		
	5/2/17	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS		
	6/19/18	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS		
	10/1/18	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS		
	4/8/19	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS		
MW-50	5/4/10	0.0468	ND	ND	0.0732	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS		
	10/15/14	0.042	ND	ND	0.057	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS		
	3/18/15	0.028	ND	ND	0.043	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS		
	5/13/15	0.029	ND	ND	0.039	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS		
	9/17/15	0.018	ND	ND	0.052	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS		
	9/29/16	0.031	ND	ND	0.045	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS		
	12/15/16	0.035	ND ND	ND	0.056	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS		
	3/1/17	0.032	ND	ND	0.039	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS		
	5/4/17	0.044	ND	ND	0.065	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS		
	6/20/18	0.028	ND	ND	0.043	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS		
	10/1/18	0.027	ND	ND	0.040	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS		
	4/9/19	0.031	ND	ND	0.040	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS		
MW-56	10/17/14	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS		
	3/17/15	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS		
	5/12/15	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS		
	9/17/15	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS		
	9/29/16	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS		
	12/15/16 ¹	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS		
	2/28/17	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS		
	5/2/17	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS		
	6/19/18	ND	ND ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS		
	10/2/18	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS		
	4/8/19	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS		
	4/8/2019 (DUP)	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS		

Exceeds EPA Region VI Drinking Water MCLs or November 2018 (most current) Tapwater RSLs (Target Risk=1E-06, Hazard Quotient=0.1), if no MCL exists.

Only compounds that were detected in one or more samples are shown in the table.

Phase I, II, and III detections are also shown on this table. Phase I was conducted in March, June, September, and November 2012. Phase II was conducted October 2014, March, May, and September 2015. Phase III was conducted September and December 2016, February/March and May 2017. The 2018 first-semiannual LTM event was conducted June 2018 and the second semi-annual LTM event was conducted October 2018. The 2019 first semi-annual LTM event was conducted mg/L = milligrams per liter

CAS - unique numerical identifier assigned by Chemical Abstracts Service (CAS)

DCE - Dichloroethene

EPA - United States Environmental Protection Agency

MCL - Maximum Contaminant Level

MW - Monitoring Well RSL - Regional Screening Level

NA - Not Available

ND - Non-Detect

NS - Not Sampled PZ - Piezometer

Not sampled due to inclement weather.

TABLE 1 GROUNDWATER DATA SUMMARY SSW COLLIS CLINTON, IA

	Fourth Saturated Grou	ndwater Unit	100	
	PARAMETERS (mg/L)	cis-1,2-DCE	TCE	Vinyl Chloride
	CAS#	156-59-2	79-01-6	75-01-4
	EPA NOVEMBER 2018 RSL TAPWATER SCREENING CRITERIA (mg/L)	0.0036	0.00049	0.000019
MONITORING WELL	EPA DRINKING WATER MCL (mg/L)	0.0700	0.005	0.002
MW-43	10/15/14	0.0068	ND	ND
	3/18/15	0.0056	ND	0.0015
	5/12/15	0.0019	ND	0.0019
	9/16/15	0.0013	ND	0.0039
	9/29/16	0.0045	ND	0.0022
	12/15/16	ND	ND	ND
	2/28/17	0.00058 J	ND	0.0027
	5/4/17	0.0049	ND	ND
	6/19/18	0.003	ND	0.0024
	10/1/18	0.0028	ND	0.0027
	4/8/19	0.0023	ND	ND

Notes:

Exceeds EPA Region VI Drinking Water MCLs or November 2018 (most current) Tapwater RSLs (Target Risk=1E-06, Hazard Quotient=0.1), if no MCL exists.

Only compounds that were detected in one or more samples are shown in the table.

Phase I, II, and III detections are also shown on this table. Phase I was conducted in March, June, September, Phase I, II, and III detections are also shown on this table. Phase I was conducted in March, June, September, and November 2012. Phase II was conducted October 2014, March, May, and September 2015. Phase III was conducted September and December 2016, February/March and May 2017. The 2018 first-semiannual LTM event was conducted June 2018 and the second semi-annual LTM event was conducted October 2018. The 2019 first semi-annual LTM event was conducted April 2019.

mg/L = millograms per liter

CAS - unique numerical identifier assigned by Chemical Abstracts Service (CAS)

DCE - Dichloroethene

EPA - United States Environmental Protection Agency

MCL - Maximum Contaminant Level MW - Monitoring Well RSL - Regional Screening Level NA - Not Available

ND - Non-Detect

NS - Not Sampled

PZ - Piezometer

TABLE 2 WATER ELEVATION SUMMARY 2019 FIRST-SEMI ANNUAL LTM GROUNDWATER MONITORING COLLIS, INC., CLINTON IOWA

Well ID	TOC ELEVATION (ft amsl)	Constructed Well Depth (ft bgs)	Nominal Screen Interval (ft bgs)	Time	DTW (from TOC)	Elevation (ft amsl)				
	Measuremen	t Date:		4/8/19						
MW-34	589.29	31.6	25-30	825	5.12	584.17				
MW-38	585.47	9.95	5-10	805	3.79	581.68				
MW-39	587.47	13.91	9-14	800	3.61	583.86				
MW-42	589.25	50.2	42-47	830	4.50	584.75				
MW-43	585.21	99.38	94.75-99.75	810	0.0	585.21				
MW-45*	582.41	25.59	19-24	835	0.0	582.41				
MW-47S	583.17	17.93	13-18	900	1.68	581.49				
MW-50	587.27	24.77	20-25	815	3.10	584.17				
MW-50S	587.51	12.28	7.5-12.5	820	3.20	584.31				
MW-53*	582.73	52.24	45-50	840	0.0	582.73				
MW-56	582.33	30	25-30	845	1.58	580.75				
PZ-47	583.17	10.89	1-11	855	1.95	581.22				
PZ-48	584.27	10.65	1-11	850	3.20	581.07				

Notes:

* Artesian conditions identified

NA - Not available

DTW - Depth to water

TOC - Top of casing

ft bgs - feet below ground surface

ft amsl - feet above mean sea level

Table 3 Groundwater Field Parameter Readings 2019 First Semi-Annual LTM Groundwater Monitoring Collis Inc., Clinton, Iowa

Monitoring Well	Collection Date	Temperature (°C)	pH (S.U.)	Specific Conductivity (mS/cm)	DO (mg/L)	Turbidity (NTU)	ORP (mV)
	9/28/16	17.61	6.61	0.962	0.38	5.3	-30.6
	12/13/16	7.61	6.65	1.05	6.13	1000	-79.6
07.47	2/28/2017*	NA	NA	NA NA	NA	NA NA	NA
PZ-47	5/2/17 6/18/2018	10.36	6.53	0.791	2.48	300	35.1
	10/1/2018	19.11	7.11 7.52	0.953 0.926	9.22	44.7 46.2	59.9 -76.5
	4/8/2019	7.17	6.26	0.644	2.97	7.6	24.8
	9/28/16	16.61	6.73	0.902	1.82	75.3	-1.8
	12/13/16	10.78	6.9	0.873	5.48	OOR	-270
	2/28/17	9.67	6.65	0.748	33.1	167	151.8
PZ-48	5/2/17	11.76	6.77	0.595	4.08	5.45	79.2
	6/18/18	20.55	7.45	0.677	9.8	46.8	53.9
	10/1/18 4/8/19	16.76 5.7	7.48	0.631	3.18	44.2	24.2
	9/29/16	14.76	6.49	0.458 1.183	4.2 0.12	26.6 1.75	-46.8
	12/15/16	11.7	7.08	0.999	2.55	1.8	228.6
	3/1/17	11.09	7.04	0.714	0.64	19	-33.2
MW-34	5/4/17	12.45	7.49	1.014	0.79	1.67	-11.9
	6/19/18	13.83	7.17	0.975	0.46	1.36	0.7
	10/1/18	15.04	7.84	0.835	0.9	2.4	-21.6
	4/9/19	11.71	6.9	0.875	1.59	1.37	51.6
	9/29/16	20.21	6.84	1.655	0.18	11	-81.4
	12/15/16 2/28/17	9.2	6.88 6.48	1.364	3.48 0.23	10.2	77 -65.8
MW-38	5/4/17	12.08	7.13	1.588	0.99	2.6	-6.2
	6/19/18	15.28	6.91	1.642	0.44	5.17	-29.9
	10/1/18	19.28	7.34	1.857	0.34	26.4	-26.3
	4/8/19	9.11	6.7	1.176	1.7	3.01	21.8
	9/29/16	18.04	6.74	2.774	0.15	6.8	-76.5
	12/15/16	NS	NS	NS	NS	NS	NS
MW-39	3/2/17	12.99	6.76	2.035	0.55	18.1	-46.2
W1W-33	5/4/17 6/19/18	14.36 15.26	6.98 6.84	2.614 2.656	1.18	71.5	-26
	10/2/18	16.8	7.38	2.656	0.58	5.07 6.5	-18.2 -37.0
	4/9/19	13.52	6.6	1.965	0.63	0.92	-17.2
	9/27/16	15.06	6.68	1.027	0.17	1.29	-18.3
	12/13/16	9.9	7.13	1.085	1.44	3.3	-43.1
	3/2/17	11.29	7.11	0.784	0.57	1.34	-38.8
MW-42	5/4/17	13.66	7.44	1.047	1.26	0.9	-6.9
	6/19/18	14.25	7.16	1.111	0.31	4.49	37.2
	10/1/18 4/9/19	14.56 13.11	7.98	0.932	0.9	6.2	29.8
	9/29/16	14.99	7.03 7.45	0.883 0.667	2.59 0.13	1.36	-10.4 -144.9
	12/15/16	11.56	7.65	0.639	0.56	1	-189.2
	2/28/17	13.21	7.8	0.478	0.36	4.82	-142.3
MW-43	5/4/17	13.1	7.61	0.655	0.79	1.43	-25.9
	6/19/18	17.39	7.6	0.654	0.55	2.71	-142.6
	10/1/18	15.33	8.47	0.549	0.32	4.5	-142.6
	4/8/19	14.57	7.35	0.57	0.7	1.59	-60.3
	9/28/16 12/14/16	13.15 9.95	7.16 7.11	0.856 0.863	3.28 0.5	39 18.4	196.3 165.2
	2/28/17	12.07	7.17	0.639	0.25	39.2	165.2
MW-45	5/4/17	11.75	7.4	0.838	0.71	6.9	9.1
	6/19/18	12.64	7.21	0.831	0.17	4.01	-1.5
	10/2/18	14.22	8.07	0.651	0.02	9.1	58.0
	4/8/19	11.52	6.88	0.671	3.05	10.6	71.9
	9/28/16	12.77	6.97	0.736	1.02	10.6	-100
	12/15/16	NS 9.91	NS 7.01	NS 0.47	NS	NS 20.7	NS
MW-47s	2/28/17 5/2/17	9.91 9.92	7.01 6.87	0.47	2.11	30.7 28.1	-51.1
	6/19/18	11.57	7.12	0.602	0.31	14.7	-62.8 -68.8
	10/1/18	13.85	7.92	0.608	0	0.09	-39.0
	4/8/19	9.19	6.51	0.532	1.76	4.7	-64.2
	9/29/16	15.87	6.95	2.422	0.2	9.19	-102.3
	12/15/16	13.75	6.82	2.529	0.4	1.43	-97.1
MW FO	3/1/17	12.55	6.99	1.931	0.48	15	-92.6
MW-50	5/4/17	13.54	7.23	2.496	1.18	1.03	-55.6
	6/20/18	13.75 14.77	7.04	2.53	0.5	4.62	-0.1
	10/1/18 4/9/19	14.77	7.71 6.89	0.1932	0.44	20.2	53.7
	9/29/16	17.09	7.01	2.065	0.99	4.62 39.3	-36.1 -105.2
	12/15/16	13.34	6.89	2.08	0.5	16.6	-99.8
	3/1/17	10.32	7.12	1.192	0.71	2.79	-29.1
						A VALUE OF THE PARTY OF THE PAR	
MW-50S	5/4/15	11.9	7.35	1.8	0.92	5.65	-82.8
MW-50S		11.9 13.65 15.73	7.35 7.15 7.66	1.8 1.711 1.04	0.92 0.27 0.1	5.65 2.18 14.2	-82.8 -14.3 -8.0

Table 3 **Groundwater Field Parameter Readings** 2019 First Semi-Annual LTM Groundwater Monitoring Collis Inc., Clinton, Iowa

Monitoring Well	Collection Date	Temperature (°C)	pH (S.U.)	Specific Conductivity (mS/cm)	DO (mg/L)	Turbidity (NTU)	ORP (mV)
	9/29/16	11.78	7.35	0.756	0.27	15.5	-96.1
	12/14/16	9.3	7.35	0.761	0.4	1	-75.5
	2/28/17	11.51	7.29	0.5444	0.29	6.53	-85.8
MW-53	5/4/17	11.97	7.55	0.735	0.6	1.2	-40.2
	6/19/18	13.69	7.35	0.724	0.22	1.66	-18.4
	10/2/18	11.1	8.11	0.559	0.07	9	-63.0
	4/8/19	12.19	7.06	0.596	3.71	2.06	-46.7
	9/29/16	13.16	6.95	0.739	1.54	75.3	-94.4
	12/15/16	NS	NS	NS	NS	NS	NS
	2/28/17	11.12	6.97	0.513	0.31	46	-93.5
MW-56	5/2/17	11.24	6.81	0.632	1.97	85.9	-101.2
	6/19/18	13.44	7.02	0.691	0.17	2.6	-72.2
	10/2/18	13.61	7.59	0.531	0.35	1.7	-73.0
	4/8/19	9.89	6.67	0.512	10.01	16.7	-36.0

Notes:

* PZ-47 dried up before field parameters could be collected.

Phase III groundwater field parameters are included in the table. Phase III was conducted during Q3 and Q4 of 2016 and Q1 and Q2 of 2017
The 2018 first semi-annual (SA) long term monitoring (LTM) event was conducted in June 2018, the 2018 second SA LTM event was conducted in October 2018, and the 2019 first SA LTM event was conducted in April 2019.

Only wells included in the LTM are shown in the table

°C - Degrees Celsius

mg/L - milligram per liter mS/cm - milliSiemens per centimeter

mV - millivolt

NM - Not Measured

NS - not sampled NTU - Nephelometric Turbidity Unit

ORP - Oxidation Reduction Potential

S.U. - pH Standard Units

OOR - Out of Range on the turbidity meter (1000+NTU)

TABLE 4 VAPOR INTRUSION SCREENING COLLIS, INC. CLINTON, IA

	PARAMETERS (ug/L)	cis-1,2-DCE 156-59-2	trans-1,2-DCE 156-60-5	TCE 79-01-6	Vinyl Chloride 75-01-4	1,1-DCE 75-35-4
	CAS # VISL Target Groundwater	130-39-2	150-00-5			
	Concentration (µg/L)	NA	NA NA	1.9**	2.45	82.1
	TCR:10 ⁶ THQ:0.1					
	VISL Target Groundwater Concentration (µg/L)	NA	NA NA	19**	24.5	821
	TCR:10 ⁶ THQ:1					15.50
Monitoring Well	Sample Date				dwater Unit	
	9/29/16	99	5.4	ND	84 28	ND ND
MW-38	12/15/16	88 87	3.2 3.2	ND ND	28 84	ND
	2/28/17 5/4/17	120	7.7	ND	81	ND
	6/19/18	120	5.2	ND	82	ND
	10/1/18	130	5.6	ND	97	ND ND
	4/8/19 9/29/16	100	3.2 15	ND ND	55 82	1.6
MW-39	12/15/2016*	NS	NS	NS	NS	NS
	3/2/17	260	11	ND	65	1.2
	5/4/17	270 290	16 16	ND ND	93 85	1.9
	6/19/18 6/19/18 DUP	260	16	ND	74	2.1
	10/2/18	210	11	ND	58	1.2
	4/9/19	210	8.8	ND	75	1.0
	9/29/16	6.8	ND ND	ND ND	42 43	ND ND
MW-50S	12/15/16 3/1/17	9.8	ND ND	ND	25	ND
	3/1/17 DUP	8.8	ND	ND	27	ND
	5/4/17	15	ND	ND	52	ND ND
	6/20/18	8.1 5.8	ND ND	ND ND	45 30	ND ND
	10/2/18 4/9/19	7.7	ND ND	ND ND	37	ND
	9/28/16	ND	ND	ND	ND	ND
PZ-47	12/13/16	ND	ND	ND ND	ND ND	ND ND
	3/2/17 5/2/17	ND ND	ND ND	ND ND	ND ND	ND
	6/18/18	ND	ND	ND	ND	ND
	10/1/18	ND	ND	ND	ND	ND
	10/1/18 DUP	ND	ND ND	ND ND	ND ND	ND ND
	4/8/19 9/28/16	ND ND	ND ND	ND ND	ND ND	ND
PZ-48	12/13/16	ND	ND	ND	ND	ND
	3/2/17	ND	ND	ND	ND	ND
	5/2/17	ND ND	ND ND	ND ND	ND ND	ND ND
	6/18/18	ND ND	ND ND	ND ND	ND	ND
	4/8/19	ND	ND	ND	ND	ND
					ındwater Unit	
	9/29/16	100	3.5	24	4.6	ND
MW-34	9/29/16 12/15/16	120		24 23	4.6 2.3	
MW-34	9/29/16		3.5 3.6 3.6 2.1	24 23 24 17	4.6 2.3 2.6 2.7	ND ND ND 0.45 J
MW-34	9/29/16 12/15/16 12/15/2016 DUP 3/1/17 5/4/17	120 130 120 120	3.5 3.6 3.6 2.1 4.0	24 23 24 17 14	4.6 2.3 2.6 2.7 15	ND ND ND 0.45 J ND
MW-34	9/29/16 12/15/16 12/15/2016 DUP 3/1/17 5/4/17 6/19/18	120 130 120 120 100	3.5 3.6 3.6 2.1 4.0 2.4	24 23 24 17 14 16	4.6 2.3 2.6 2.7 15 2.4	ND ND ND 0.45 J ND ND
MW-34	9/29/16 12/15/16 12/15/2016 DUP 3/1/17 5/4/17 6/19/18 10/1/18	120 130 120 120 100 86	3.5 3.6 3.6 2.1 4.0	24 23 24 17 14	4.6 2.3 2.6 2.7 15	ND ND ND 0.45 J ND ND 0.67 J ND
MW-34	9/29/16 12/15/16 12/15/2016 DUP 3/1/17 5/4/17 6/19/18	120 130 120 120 100 86 65	3.5 3.6 3.6 2.1 4.0 2.4 3.1 1	24 23 24 17 14 16 16 9.6 5.3	4.6 2.3 2.6 2.7 15 2.4 1.5 0.66 J	ND ND ND 0.45 J ND ND 0.67 J ND
MW-34	0/29/16 12/15/16 12/15/2016 DUP 3/11/7 5/41/7 6/19/18 10/1/18 4/0/19 9/28/16 12/14/16	120 130 120 120 100 86 65 84 31	3.5 3.6 3.6 2.1 4.0 2.4 3.1 1 9 ND	24 23 24 17 14 16 16 9.6 5.3 3.1	4.6 2.3 2.6 2.7 15 2.4 1.5 0.66 J 4.2 ND	ND ND ND 0.45 J ND ND 0.67 J ND ND ND
	9/29/16 12/15/16 12/15/2016 DUP 3/11/7 5/4/17 6/19/18 10/1/18 4/9/19 9/28/16 12/14/16	120 130 120 120 100 86 65 84 31 35	3.5 3.6 3.6 2.1 4.0 2.4 3.1 1 9 ND	24 23 24 17 14 16 16 9.6 5.3 3.1 4.3	4.6 2.3 2.6 2.7 15 2.4 1.5 0.66 J	ND ND ND 0.45 J ND ND 0.67 J ND
	0/29/16 12/15/16 12/15/2016 DUP 3/11/7 5/41/7 6/19/18 10/1/18 4/0/19 9/28/16 12/14/16	120 130 120 120 100 86 65 84 31	3.5 3.6 3.6 2.1 4.0 2.4 3.1 1 9 ND	24 23 24 17 14 16 9.6 5.3 3.1 4.3 4.8 6.2	4.6 2.3 2.6 2.7 15 2.4 1.5 0.66 J 4.2 ND ND ND ND	ND ND ND 0.45 J ND ND 0.67 J ND ND ND ND ND ND
	0/29/16 12/15/16 12/15/2016 DUP 3/11/7 5/41/7 6/19/18 10/1/18 4/0/19 9/28/16 12/14/2016 Dup 2/28/17 5/4/17 6/19/18	120 130 120 120 120 100 86 65 84 31 35 19 67	3.5 3.6 3.6 2.1 4.0 2.4 3.1 1 9 ND ND 0.81 J 2.5 1.5	24 23 24 17 14 16 16 9.6 5.3 3.1 4.3 4.8 6.2 4.2	4.6 2.3 2.6 2.7 15 2.4 1.5 0.66 J 4.2 ND ND ND ND ND	ND ND ND 0.45 J ND
	9/29/16 12/15/16 12/15/2016 DUP 3/1/17 5/4/17 6/19/18 10/1/18 4/9/19 9/28/16 12/14/16 12/14/2016 Dup 2/28/17 5/4/17 6/19/18	120 130 120 120 120 100 86 65 84 31 35 19 67 48	3.5 3.6 2.1 4.0 2.4 3.1 1 9 ND ND 0.81 J 2.5 1.5	24 23 24 17 14 16 9.6 5.3 3.1 4.3 4.8 6.2 4.2	4.6 2.3 2.6 2.7 15 2.4 1.5 0.86 J 4.2 ND ND ND ND ND ND	ND N
	0/29/16 12/15/16 12/15/2016 DUP 3/11/7 5/41/7 6/19/18 10/1/18 4/0/19 9/28/16 12/14/2016 Dup 2/28/17 5/41/7 6/19/18 10/2/18 4/8/19	120 130 120 120 120 100 86 65 84 31 35 19 67	3.5 3.6 3.6 2.1 4.0 2.4 3.1 1 9 ND ND 0.81 J 2.5 1.5	24 23 24 17 14 16 9.6 5.3 3.1 4.3 4.8 6.2 4.2 4.0 ND	4.6 2.3 2.6 2.7 15 2.4 1.5 0.06 J 4.2 ND ND ND ND ND ND ND ND ND ND ND ND ND	ND N
	9/29/16 12/15/16 12/15/2016 DUP 3/1/17 5/4/17 6/19/18 10/1/18 4/9/19 9/28/16 12/14/16 12/14/2016 Dup 2/28/17 5/4/17 6/19/18	120 130 120 120 100 86 65 84 31 35 19 67 48 40 87 ND	3.5 3.6 2.1 4.0 2.4 3.1 1 9 ND ND 0.81 J 2.5 1.5 1.4 2.5 ND	24 23 24 17 14 16 16 9.6 5.3 3.1 4.3 4.8 6.2 4.2 4.0 ND	4.6 2.3 2.6 2.7 15 2.4 1.5 0.66 J 4.2 ND ND ND ND ND ND ND ND ND ND ND ND ND	ND ND 0.45 J ND 0.67 J ND
MW-45	9/29/16 12/15/16 12/15/2016 DUP 3/11/7 5/4/17 6/19/18 10/1/18 4/8/19 9/28/16 12/14/2016 Dup 2/28/17 5/4/17 6/19/18 10/2/18 4/8/19 9/28/16 12/15/16* 2/28/17	120 130 120 120 120 100 86 65 84 31 35 19 67 48 40 87 ND	3.5 3.6 3.6 2.1 4.0 2.4 3.1 1 9 ND ND 0.81 J 2.5 1.4 2.5 ND NS ND	24 23 24 17 14 16 16 9.6 5.3 3.1 4.8 6.2 4.0 ND ND	4.6 2.3 2.6 2.7 15 2.4 1.5 0.86 J 4.2 ND ND ND ND ND ND ND ND ND ND ND ND ND	ND N
MW-45	0/29/16 12/15/16 12/15/2016 DUP 3/11/7 5/41/7 6/19/18 10/1/18 4/0/19 9/28/16 12/14/2016 Dup 2/28/17 5/41/7 6/19/18 10/2/18 4/8/19 9/28/16 12/15/16* 2/28/17 5/21/7	120 130 120 120 100 86 65 84 31 35 19 67 48 40 87 ND ND	3.5 3.6 2.1 4.0 2.4 3.1 1 9 ND ND 0.81 J 2.5 1.5 1.4 2.5 ND	24 23 24 17 14 16 16 9.6 5.3 3.1 4.3 4.8 6.2 4.2 4.0 ND	4.6 2.3 2.6 2.7 15 2.4 1.5 0.66 J 4.2 ND ND ND ND ND ND ND ND ND ND ND ND ND	ND N
MW-45	0/29/19 12/15/16 12/15/2016 DUP 3/11/7 5/41/7 6/19/18 10/1/18 4/0/19 9/28/16 12/14/2016 Dup 2/28/17 5/41/7 6/19/18 10/2/18 4/8/19 9/28/16 12/15/16* 2/28/17 5/21/7 6/19/18 10/2/18	120 130 120 120 120 100 86 65 84 31 35 19 67 48 40 87 ND ND ND	3.5 3.6 3.6 2.1 4.0 2.4 3.1 1 9 ND ND 0.81 J 2.5 1.5 1.4 2.5 ND ND ND ND ND ND ND ND ND ND ND ND ND	24 23 24 17 14 16 16 9.8 5.3 3.1 4.8 6.2 4.2 4.0 ND ND ND ND ND	4.6 2.3 2.6 2.7 15 2.4 1.5 0.66 J 4.2 ND	ND ND ND ND ND ND ND ND ND ND ND ND ND N
MW-45	9/29/16 12/15/16 12/15/2016 DUP 3/11/7 5/4/17 6/19/18 10/1/18 4/9/19 9/28/16 12/14/16 12/14/2016 Dup 2/28/17 5/4/17 6/19/18 10/2/18 4/8/19 9/28/16 12/15/16 2/28/17 5/2/17 6/19/18 10/2/18 4/8/19 9/28/16 12/15/16 2/28/17 6/19/18 10/1/18	120 130 120 120 100 86 65 84 31 35 19 67 48 40 87 ND ND ND	3.5 3.6 3.6 2.1 4.0 2.4 3.1 9 ND ND 0.81 J 2.5 1.5 1.4 2.5 ND ND ND ND ND ND ND ND ND ND ND ND ND	24 23 24 17 14 16 9.6 5.3 3.1 4.8 6.2 4.2 4.0 MD ND ND ND ND ND ND	4.6 2.3 2.6 2.7 15 2.4 1.5 0.86 4.2 ND	ND ND O.45 / ND
MW-45	0/29/16 12/15/16 12/15/2016 DUP 3/11/7 5/41/7 6/19/18 10/11/8 4/01/9 9/28/16 12/14/2016 Dup 2/28/17 5/41/7 6/19/18 10/2/18 4/8/19 9/28/16 12/15/16* 2/28/17 5/21/7 6/19/18 10/2/18 4/8/19 9/28/16 12/15/16* 2/28/17 5/21/7 6/19/18 10/1/18 4/8/19	120 130 120 120 120 120 100 86 65 84 31 35 19 67 48 40 97 NS ND ND ND	3.5 3.6 3.6 2.1 4.0 2.4 3.1 1 9 ND ND 0.81 J 2.5 1.5 1.4 2.5 ND ND ND ND ND ND ND ND ND ND ND ND ND	24 23 24 17 14 16 16 9.8 5.3 3.1 4.8 6.2 4.2 4.0 ND ND ND ND ND	4.6 2.3 2.6 2.7 15 2.4 1.5 0.66 J 4.2 ND	ND ND ND ND ND ND ND ND ND ND ND ND ND N
MW-45	9/29/16 12/15/16 12/15/2016 DUP 3/11/7 5/4/17 6/19/18 10/1/18 4/9/19 9/28/16 12/14/16 12/14/2016 Dup 2/28/17 5/4/17 6/19/18 10/2/18 4/8/19 9/28/16 12/15/16 2/28/17 5/2/17 6/19/18 10/2/18 4/8/19 9/28/16 12/15/16 2/28/17 6/19/18 10/1/18	120 130 120 120 120 100 86 65 84 31 35 19 67 48 40 87 ND ND ND ND ND ND ND ND ND ND ND ND ND	3.5 3.6 3.6 2.1 4.0 2.4 3.1 1 9 ND ND 0.81 J 2.5 1.5 1.5 1.5 1.5 ND ND ND 0.81 J 2.5 ND ND ND ND ND ND ND ND ND ND ND ND ND	24 23 24 17 14 16 9.6 5.3 3.1 4.8 6.2 4.2 4.0 ND NS ND ND ND ND ND ND ND ND	4.6 2.3 2.6 2.7 15 2.4 1.5 0.66 J 4.2 ND	ND N
MW-45	0/29/16 12/15/16 12/15/16 12/15/2016 DUP 3/11/7 5/41/7 6/19/18 10/1/18 40/19 0/28/16 12/14/16 12/14/2016 Dup 2/28/17 5/41/7 6/19/18 10/2/18 4/8/19 0/28/16 12/15/16 12/15/16 10/1/18 4/8/19 0/28/16 12/15/16 10/1/18 4/8/19 0/29/16 12/15/16 13/11/7	120 130 120 120 120 100 86 65 84 31 35 19 67 48 40 87 ND ND ND ND ND ND 31 35 32 44	3.5 3.6 3.6 2.1 4.0 2.4 3.1 9 ND ND ND 0.81 J 2.5 1.5 1.4 2.5 ND ND ND ND ND ND ND ND ND ND ND ND ND	24 23 24 17 17 14 16 16 9.8 5.3 3.1 4.3 4.8 6.2 4.2 4.0 4.0 ND ND ND ND ND ND ND ND ND ND ND ND ND	4.6 2.3 2.6 2.7 15 2.4 1.5 0.06 J 4.2 ND	ND N
MW-45	0/29/16 12/15/16 12/15/2016 DUP 3/11/7 5/41/7 6/19/18 10/11/8 4/01/9 9/28/16 12/14/2016 Dup 2/28/17 5/41/7 6/19/18 10/2/18 4/8/19 9/28/16 12/15/16* 2/28/17 5/21/7 6/19/18 10/1/18 4/8/19 9/28/16 12/15/16* 12/28/17 5/41/7 6/19/18 10/1/18 4/8/19	120 130 120 120 120 100 86 65 84 31 35 19 67 48 49 40 ND ND ND ND ND ND ND ND ND ND ND ND ND	3.5 3.6 3.6 2.1 4.0 2.4 3.1 1 9 ND ND 0.81 J 2.5 1.5 1.5 1.5 1.5 ND ND 0.81 J 2.5 ND ND 0.81 J 0.81	24 23 24 17 14 16 9.6 5.3 3.1 4.8 6.2 4.0 ND ND ND ND ND ND ND ND ND ND ND ND ND	4.6 2.3 2.6 2.7 15 2.4 1.5 0.66 J 4.2 ND	ND N
MW-45	0/29/16 12/15/16 12/15/16 12/15/2016 DUP 3/11/7 5/41/7 6/19/18 10/1/18 40/19 9/28/16 12/14/16 12/14/2016 Dup 2/28/17 5/41/7 6/19/18 10/2/18 4/8/19 9/28/16 12/15/16 12/15/16 10/1/18 4/8/19 9/28/16 12/15/16 13/15/16 12/15/16 3/11/7 5/4/7 6/19/18	120 130 120 120 100 86 65 84 31 35 19 67 48 40 87 ND ND ND ND ND ND ND ND ND ND ND ND ND	3.5 3.6 3.6 2.1 4.0 2.4 3.1 9 ND ND 0.81 J 2.5 1.5 1.4 2.5 ND ND ND ND ND ND ND ND ND ND ND ND ND	24 23 24 17 17 14 16 16 9.8 5.3 3.1 4.3 4.8 6.2 4.2 4.0 4.0 ND ND ND ND ND ND ND ND ND ND ND ND ND	4.6 2.3 2.6 2.7 15 2.4 1.5 0.06 J 4.2 ND	ND N
MW-45	0/29/16 12/15/16 12/15/2016 DUP 3/11/7 5/41/7 6/19/18 10/11/8 4/01/9 9/28/16 12/14/2016 Dup 2/28/17 5/41/7 6/19/18 10/2/18 4/8/19 9/28/16 12/15/16* 2/28/17 5/21/7 6/19/18 10/1/18 4/8/19 9/28/16 12/15/16* 12/28/17 5/41/7 6/19/18 10/1/18 4/8/19	120 130 120 120 120 100 86 65 84 31 35 19 67 48 49 40 ND ND ND ND ND ND ND ND ND ND ND ND ND	3.5 3.6 3.6 2.1 4.0 2.4 3.1 1 9 ND ND 0.81 J 2.5 1.5 1.5 1.5 1.5 ND ND 0.81 J 2.5 ND ND 0.81 J 0.81	24 23 24 17 17 16 16 9.6 5.3 3.1 4.3 4.8 6.2 4.2 4.0 ND ND ND ND ND ND ND ND ND ND ND ND ND	4.6 2.3 2.6 2.7 15 2.4 1.5 0.06 J 4.2 ND	ND N
MW-45	0/29/16 12/15/16 12/15/2016 0UP 3/11/7 5/41/7 6/19/18 10/11/8 4/01/0 9/28/16 12/14/16 12/14/16 12/14/16 12/14/16 10/2/18 4/8/19 9/28/16 12/15/16* 2/28/17 5/41/7 6/19/18 10/2/18 4/8/19 9/28/16 12/15/16* 12/15/16* 3/1/17 6/19/18 10/1/18 4/8/19 9/29/16 12/15/16 3/1/17 6/19/18 10/1/18 4/8/19	120 130 120 120 120 100 86 65 84 31 35 19 67 48 49 40 87 ND ND ND ND ND ND ND ND ND ND ND ND ND	3.5 3.6 3.6 2.1 4.0 2.4 3.1 1 9 ND ND 0.81 J 2.5 1.5 1.5 1.5 1.5 1.5 ND ND ND ND ND ND ND ND ND ND ND ND ND	24 23 24 17 14 16 9.6 9.6 9.7 14.3 3.1 4.8 6.2 4.2 4.0 ND ND ND ND ND ND ND ND ND ND ND ND ND	4.6 2.3 2.6 2.7 15 2.4 1.5 0.66 J 4.2 ND	ND N
MW-47S MW-50	0/29/16 12/15/16 12/15/16 12/15/2016 DUP 3/11/7 5/41/7 6/19/18 10/1/18 40/19 9/28/16 12/14/2016 Dup 2/28/17 5/41/7 6/19/18 10/2/18 4/8/19 9/28/16 12/15/16 12/15/16 12/15/16 12/15/16 3/1/7 5/4/7 6/19/18 10/1/18	120 130 120 120 120 100 86 65 84 31 35 10 67 48 40 87 ND ND ND ND ND ND ND ND ND ND ND ND ND	3.5 3.6 3.6 2.1 4.0 2.4 3.1 1 9 ND ND 0.81 J 2.5 1.5 1.5 1.5 1.5 ND ND ND ND ND ND ND ND ND ND ND ND ND	24 23 24 17 17 16 16 9.6 5.3 3.1 4.3 4.3 4.3 4.2 4.2 4.0 ND ND ND ND ND ND ND ND ND ND ND ND ND	4.6 2.3 2.6 2.7 15 2.4 1.5 0.06 J 4.2 ND	ND N
MW-47S MW-50	0/29/16 12/15/16 12/15/2016 0UP 3/11/7 5/41/7 6/19/18 10/11/8 4/01/0 9/28/16 12/14/16 12/14/16 12/14/2016 0Up 2/28/17 5/41/7 6/19/18 10/2/18 4/8/19 9/28/16 12/15/16* 2/28/17 5/41/7 6/19/18 10/1/18 4/8/19 9/29/16 12/15/16 3/1/17 6/19/18 10/1/18 4/8/19 9/29/16 12/15/16 3/1/17 6/19/18 10/1/18 4/9/19 9/29/16 12/15/2016* 2/28/17 5/2/17	120 130 120 120 120 100 86 65 84 31 35 19 67 87 ND ND ND ND ND ND ND ND ND ND ND ND ND	3.5 3.6 3.6 2.1 4.0 2.4 3.1 1 9 ND ND ND 0.81 J 2.5 1.5 1.5 1.5 1.5 ND ND ND ND ND ND ND ND ND ND ND ND ND	24 23 24 17 14 16 9.6 9.6 9.7 14.3 3.1 4.8 6.2 4.2 4.0 ND ND ND ND ND ND ND ND ND ND ND ND ND	4.6 2.3 2.6 2.7 15 2.4 1.5 0.66 J 4.2 ND	ND N
MW-47S MW-50	0/29/16 12/15/16 12/15/2016 0UP 3/11/7 5/41/7 6/19/18 10/11/8 4/01/9 9/28/16 12/14/16 12/14/16 12/14/16 12/14/16 10/2/18 4/8/19 9/28/16 12/15/16 12/15/16 3/1/7 6/19/18 10/1/18 4/8/19 9/29/16 12/15/16 3/1/7 6/19/18 10/1/18 4/8/19 9/29/16 12/15/16 3/1/7 6/19/18 10/1/18 4/8/19 9/29/16 12/15/16 3/1/7 6/19/18 10/1/18 4/9/19 9/29/16 12/15/2016 2/28/17 6/19/18 10/1/18 4/9/19 9/29/16 12/15/2016 2/28/17 5/2/17 6/19/18 10/1/18 4/9/19	120 130 120 120 120 120 100 86 65 84 31 35 19 67 48 49 49 7 ND ND ND ND ND ND ND ND ND ND ND ND ND	3.5 3.6 3.6 2.1 4.0 2.4 3.1 9 ND ND ND ND ND ND ND ND ND ND ND ND ND	24 23 24 17 14 16 9.6 9.6 18 9.7 18 19 19 19 19 19 19 19 19 19 19 19 19 19	4.6 2.3 2.6 2.7 15 2.4 1.5 0.86 J 4.2 ND	NO N
MW-47S MW-50	0/29/16 12/15/16 12/15/16 12/15/2016 DUP 3/11/7 5/41/7 6/19/18 10/1/18 40/19 9/28/16 12/14/16 12/14/16 12/14/16 12/14/16 12/14/2016 Dup 2/28/17 5/41/7 6/19/18 10/2/18 4/8/19 9/28/16 12/15/16* 2/28/17 5/19/18 10/1/18 4/8/19 9/28/16 12/15/16* 3/11/7 5/19/18 10/1/18 4/8/19 9/28/16 12/15/16* 3/11/7 5/19/18 10/1/18 4/9/19 9/28/16 12/15/2016* 12/15/2016* 12/15/2016* 12/15/2016* 12/15/2016* 12/15/2016* 12/15/2016* 12/15/2016* 12/15/2016* 12/15/2016* 12/28/17 5/29/17	120 130 120 120 120 100 86 65 84 31 35 10 67 48 40 87 ND ND ND ND ND ND ND ND ND ND ND ND ND	3.5 3.6 3.6 3.6 2.1 4.0 2.4 3.1 1 0 ND	24 23 24 17 17 16 16 9 6 5 3 3 1 4 3 4 8 6 2 4 2 4 0 ND ND ND ND ND ND ND ND ND ND ND ND ND	4.6 2.3 2.6 2.7 15 2.4 1.5 0.06 J 4.2 ND	ND N

Exceeds VISL (Target Cancer Risk = 1E-06, Target Hazard Quotient = 0.1)

Exceeds VISL (Target Cancer Risk = 1E-06, Target Hazard Quotient = 0.1)

Phase III results are also included in the table. Phase III was conducted September and December 2016, February/March and May 2017. The 2018 first semi-annual LTM event was conducted April 2019 and Colober 2018. The 2019 first semi-annual LTM event was conducted April 2019

MW-39, MW-475 and MW-475 and MW-475 were not sampled during Q4 2016 (Phase III) due to inclement weather.

"TCE larget groundwater concentrations for vapor intrusion screening were back calculated from the EPA Region 7 action levels for TCE in air of ug/m3 for an eight-hour commercial/industrial work shift per EPA instructions provided in their letter comments to BB&E dated January 26, 2017.

- for TCE in air. 6 ug/m3 for an eight-hour commercial/industral work shift per EPA instructions provided in their letter commercial exposure, updated May 2018. VISL Comparisons were not included for the Third and Fourth Saturated Units, Only compounds that were detected in one or more samples are shown in the table.

 ggl. micrograms per litter
 CAS unique numerical identifier assigned by Chemical Abstracts Service (CAS)

 DCE Dichiprorebtne

 J- analyte is present at an estimated concentration between the MDL and Reporting Limit (RL)

 LTM Long Term Monitoring
 MDL Method Detection Limit
 MW Monitoring Well
 NA Not Available
 ND Non-Detect
 NS Not Sampled
 PZ Plezometer
 TCE Trichiproethere
 TCR target cancer risk
 THQ target hazard quotient
 VISL vapor intrusion screening level

TABLE 5 LTM GROUNDWATER MNA RESULTS COLLIS, Inc. CLINTON, IA

				MW-34	1				MW-42							MW-53							
	1	Phase III Q	uarterly LT	M	Se	mi-annual L'	ТМ	F	hase III Qu	uarterly LT	M	Se	mi-annual L	TM	P	hase III Qu	arterly LT	М	Se	emi-annual L'	тм		
Favorable Conditions*	Q3 2016	Q4 2016	Q1 2017	Q2 2017	SA 1 2018	SA 2 2018	SA 1 2019	Q3 2016	Q4 2016	Q1 2017	Q2 2017	SA 1 2018	SA 2 2018	SA 1 2019	Q3 2016	Q4 2016	Q1 2017	O2 2017	SA 1 2018	SA 2 2018	SA 1 2019		
DO (<0.5 mg/L)	0.12	2.55	0.64	0.79	0.46	0.9	1.59	0.17	1 44	0.57	1.26	0.31	0.9	2.59	0.27	0.4	-						
ORP (<50 mV good; <-100 mV better)	-46.8	228.6	-33.2	-119	0.7	-21.7	51.6	-18.3	-43	-38 K	-6.9	37.2	29.8	-10.4	-96.1	-75.5	0.29	0.6	0.22	0.07	3.71		
pH (5-9 S.U.)	7	7.08	7.04	7.49	7.17	7.48	6.9	6.68	7.13	7.11	7.44	7.14	7.98	7.03	7.35	7.35	-85.8	-40.2	-18.4	-73	-46.1		
Sulfate (<20,000 ug/L)	77,000	68,000	74,000	100,000	71.000	68.000	65.000	110,000	110.000	100.000	98,000	100,000	1.70	1177	1,42	1100	7.29	7.55	7.35	8.11	7.06		
Iron (>1,000 ug/L)	51.1	18	591	55.1	33 J	19.1	ND	300	160	240	130		110,000	110,000	41,000	42,000	41,000	40,000	37,000	35,000	35,000		
Nitrate/Nitrite (<1,000 ug/L)	ND	ND	33	ND	ND	ND	820	ND.	ND	ND	1.00	120	55 J	100	490	430	1,400	620	320	96	180		
Daughter Product: cis-1,2 DCE (ug/L)	100	130	120	120	100	86	6.5	3(4)	350		ND 340	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Daughter Product: trans-1,2 DCE (ug/L)	3.5	3.6	2.1	4	2.4	2.1	.0.7	9.5	330	360	340	250	320	280	17	6.7	7	7.6	9.5	12	12		
Daughter Product: 1,1 DCE (ug/L)	ND	ND	0.451	ND	ND	0.67 1	ND	9.5	8.8	8.2	11	9.2		16	ND	ND	0.36 J	ND	ND	0.67 J	0.59 J		
Daughter Product: vinyl chloride (ug/L)	4.6	2.6	2.7	15	2.4	0.073		3.3	3.5	.5	3.4	2.9	3.6	2.6	ND	ND	ND	ND	ND	ND	ND		
Dissolved Gases: ethene (ug/L)	ND	ND	ND	ND	ND	2.6 J	0.66 J	3.2	3.2	27	31	37	28	49	ND	ND	0.7 J	ND	0.85 J	1.2	1.2		
Dissolved Gases: ethane (ug/L)	20	11	170	70	ND	2.0 J	ND	ND	ND	ND	0.72 J	5.1 J	1.9 J	ND	ND	ND	ND	ND	ND	0.711	ND		
Dissolved Gases: methane (2500 ug/L)	380	220	14	20	16	17	ND	6.8	7,7	6.8	4 1	12	9.7	ND	ND	ND	ND	ND	ND	1.7 J	ND		
- 300 dg/L)	380	220	180	320	230	190	44	250	270	270	180	260	190	310	31	10	18	11	13	19	2.1		

Notes:

*Reference: Wiedemeier, et al., 1998, Evaluating Natural Attenuation of Chlorinated Solvents in Groundwater.

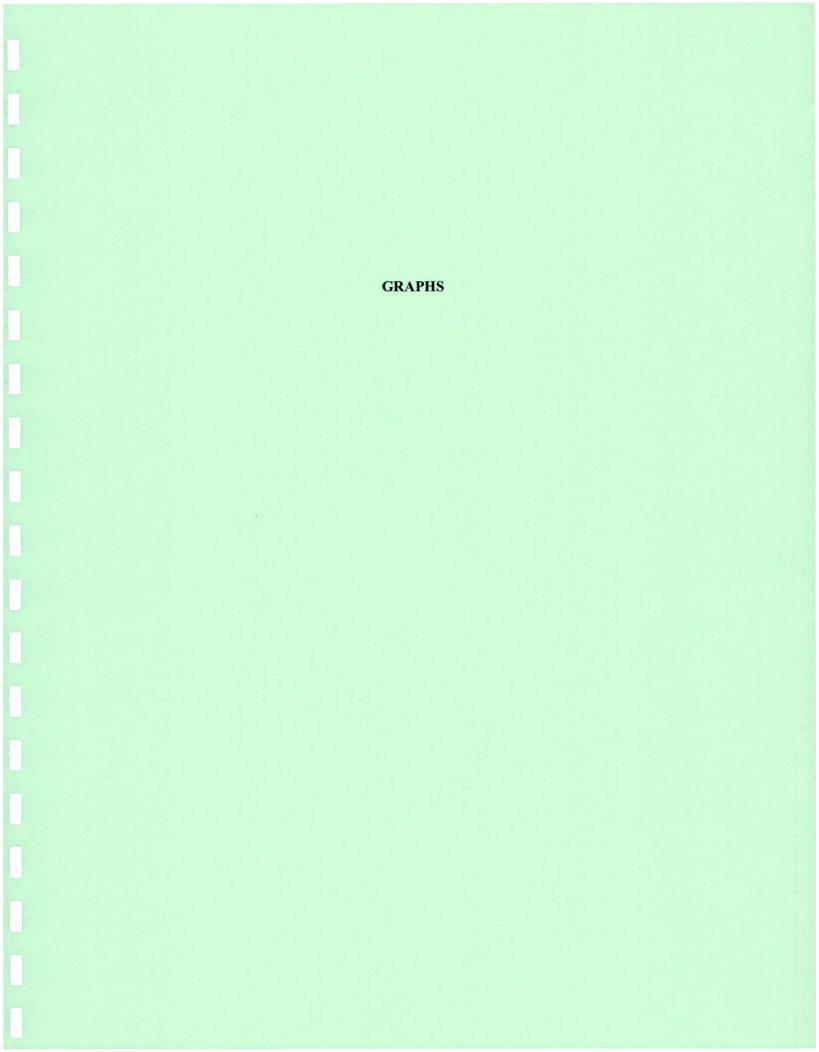
MNA groundwater results shown are from Phase III LTM conducted quarterly 2016-2017; the 2018 first semi-annual LTM conducted June 2018, the 2018 second semi-annual LTM conducted October 2018; and the 2019 first semi-annual LTM conducted April 2019.

1,1 DCE = 1,1 dichloroethylene cis-1,2 DCE = cis-1,2-dichloroethylene DO = Dissolved Oxygen

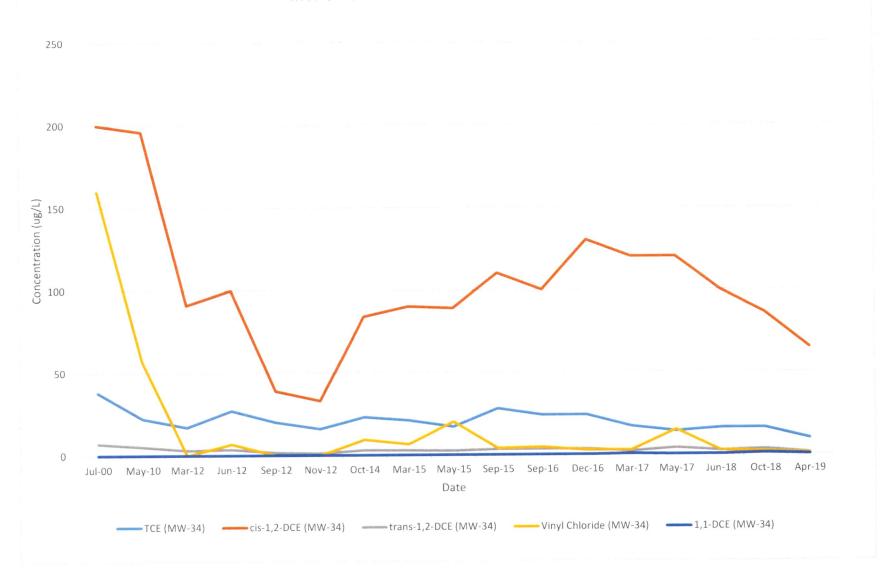
J = analyte is present at an estimated concentration between the Method Detection Limit and Reporting Limit LTM = Long Term Monitoring MNA = Monitored Natural Attenuation

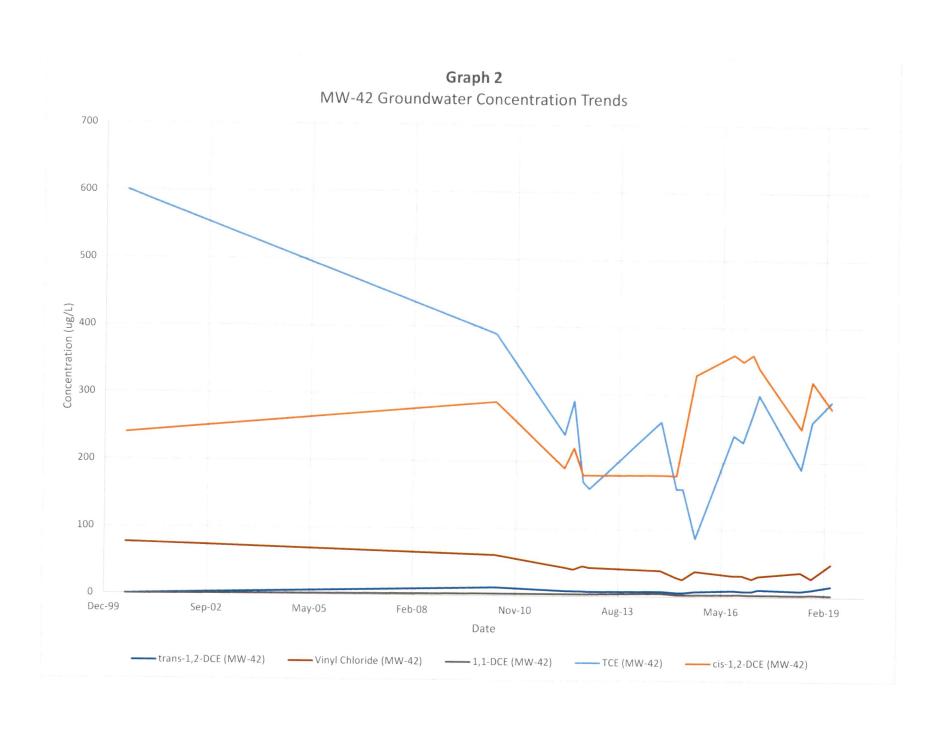
mg/L = milligrams per liter

mV = millivolt


ND = non-detect NS = not sampled

SA = Semi-annual


S.U = standard units trans-1,2 DCE = trans-1,2-dichloroethylene


ug/L = micrograms per liter
Red = does not meet favorable conditions

Green = meets favorable conditions

Graph 1MW-34 Groundwater Concentration Trends

MW-53 Groundwater Concentration Trends 40 35 30 Concentration (ug/L) 10 Sep-16 Dec-16 Feb-17 May-17 Jun-18 Oct-18 Oct-14 Mar-15 May-15 Sep-15 May-10 Mar-12 Jun-12 Sep-12 Nov-12 Sample Date ----- Vinyl Chloride (MW-53) -----trans-1,2-DCE (MW-53) ----cis-1,2-DCE (MW-53)

Graph 3

ATTACHMENT A LABORATORY ANALYTICAL DATA

18-Apr-2019

Kacie Van Buskirk BB&E, Inc. 235 East Main Street Suite 107 Northville, MI 48167

Re: SSW Collis 2019 LTM Task 1

Work Order: 1904634

Dear Kacie,

ALS Environmental received 17 samples on 10-Apr-2019 08:00 AM for the analyses presented in the following report.

The analytical data provided relates directly to the samples received by ALS Environmental - Holland and for only the analyses requested.

Sample results are compliant with industry accepted practices and Quality Control results achieved laboratory specifications. Any exceptions are noted in the Case Narrative, or noted with qualifiers in the report or QC batch information. Should this laboratory report need to be reproduced, it should be reproduced in full unless written approval has been obtained from ALS Environmental. Samples will be disposed in 30 days unless storage arrangements are made.

The total number of pages in this report is 79.

If you have any questions regarding this report, please feel free to contact me:

ADDRESS: 3352 128th Avenue, Holland, MI, USA PHONE: +1 (616) 399-6070 FAX: +1 (616) 399-6185

Sincerely,

Electronically approved by: Chad Whelton

Chad Whelton Project Manager

Report of Laboratory Analysis

Certificate No: IA: 403

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

Date: 18-Apr-19

Client:

BB&E, Inc.

Project:

SSW Collis 2019 LTM Task 1

Work Order: 1904634

Work Order Sample Summary

Lab Samp II	D Client Sample ID	<u>Matrix</u>	Tag Number	Collection Date	Date Received	<u>Hold</u>
1904634-01	COL-GW-01	Groundwater		4/8/2019 09:35	4/10/2019 08:00	
1904634-02	COL-GW-02	Groundwater		4/8/2019 10:20	4/10/2019 08:00	
1904634-03	COL-GW-03	Groundwater		4/8/2019 11:00	4/10/2019 08:00	
1904634-04	COL-GW-04	Groundwater		4/8/2019 12:10	4/10/2019 08:00	
1904634-05	COL-GW-05	Groundwater		4/8/2019 13:00	4/10/2019 08:00	
1904634-06	COL-GW-06	Groundwater		4/8/2019 13:55	4/10/2019 08:00	
1904634-07	COL-GW-07	Groundwater		4/8/2019 13:55	4/10/2019 08:00	
1904634-08	COL-GW-08	Groundwater		4/8/2019 14:55	4/10/2019 08:00	
1904634-09	COL-GW-09	Groundwater		4/8/2019 15:40	4/10/2019 08:00	
1904634-10	COL-GW-10	Groundwater		4/9/2019 08:30	4/10/2019 08:00	
1904634-11	COL-GW-11	Groundwater		4/9/2019 09:15	4/10/2019 08:00	
1904634-12	COL-GW-12	Groundwater		4/9/2019 10:00	4/10/2019 08:00	
1904634-13	COL-GW-13	Groundwater		4/9/2019 10:00	4/10/2019 08:00	
1904634-14	COL-GW-14	Groundwater		4/9/2019 11:25	4/10/2019 08:00	
1904634-15	COL-GW-15	Groundwater		4/9/2019 12:20	4/10/2019 08:00	
1904634-16	EB	Water		4/9/2019 12:30	4/10/2019 08:00	
1904634-17	Trip Blank	Water		4/9/2019	4/10/2019 08:00	

Date: 18-Apr-19

ALS Group, USA

Client:

BB&E, Inc.

Project:

SSW Collis 2019 LTM Task 1

Work Order:

1904634

Case Narrative

Batch R258206, Method VOC_14DIOX_W, Sample 1904634-12A MS/MSD: The MS/MSD recovery was above the upper control limit for 1,4-Dioxane. The corresponding result in the parent sample was non-detect, therefore no qualification is required.

Batch R258206, Method VOC_14DIOX_W, Sample 1904634-13A: One or more surrogate recoveries were above the upper control limits. The sample was non-detect, therefore, no qualification is required.

Batch R258364, Method VOC_8260_W, Sample 1904634-12A MS/MSD: The MS/MSD recoveries were outside of the control limits for cis-1,2-Dichloroethene and Trichloroethene; however, the results in the parent sample are greater than 4x the spike amount. No qualification is required.

Batch R258364, Method VOC_8260_W, Sample 1904634-12A MSD: The RPD between the MS and MSD was outside the control limit for Chloroethane. The corresponding result in the parent sample should be considered estimated.

Batch R258364, Method VOC_8260_W, Sample VLCSW2-190411: The LCS recoveries were above the upper control limits for Bromomethane and lodomethane. All the sample results in the batch were non-detect. No qualification is required.

Batch R258414, Method GASES_RSK175_W, Sample 1904634-12E MS/MSD: The MS/MSD recoveries were above the upper control limits for Ethane and Ethene. The corresponding results in the parent sample were non-detect, therefore no qualification is required.

Batch R258414, Method GASES_RSK175_W, Sample 1904634-12E MSD: The MSD recovery was outside of the control limit for Methane; however, the result in the parent sample is greater than 4x the spike amount. No qualification is required.

Client:

Units Reported

μg/L

mg/L

Description

Micrograms per Liter

Milligrams per Liter

BB&E, Inc. QUALIFIERS, Project: SSW Collis 2019 LTM Task 1

WorkOrder: 1904634

Qualifier Description Value exceeds Regulatory Limit Estimated Value a Analyte is non-accredited Analyte detected in the associated Method Blank above the Reporting Limit В E Value above quantitation range Η Analyzed outside of Holding Time Hr BOD/CBOD - Sample was reset outside Hold Time, value should be considered estimated. Analyte is present at an estimated concentration between the MDL and Report Limit ND Not Detected at the Reporting Limit O Sample amount is > 4 times amount spiked Dual Column results percent difference > 40% R RPD above laboratory control limit Spike Recovery outside laboratory control limits U Analyzed but not detected above the MDL X Analyte was detected in the Method Blank between the MDL and Reporting Limit, sample results may exhibit background or reagent contamination at the observed level. Acronym Description DUP Method Duplicate LCS Laboratory Control Sample Laboratory Control Sample Duplicate LCSD LOD Limit of Detection (see MDL) LOO Limit of Quantitation (see PQL) **MBLK** Method Blank MDL Method Detection Limit MS Matrix Spike MSD Matrix Spike Duplicate **PQL** Practical Quantitation Limit RPD Relative Percent Difference TDL Target Detection Limit **TNTC** Too Numerous To Count Α APHA Standard Methods D **ASTM** E **EPA** SW SW-846 Update III

Date: 18-Apr-19

ACRONYMS, UNITS

Client:

BB&E, Inc.

Project:

SSW Collis 2019 LTM Task 1

Sample ID:

COL-GW-01

Collection Date: 4/8/2019 09:35 AM

Date: 18-Apr-19

Work Order: 1904634

Lab ID: 1904634-01

Matrix: GROUNDWATER

Analyses	Result	Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
VOLATILE ORGANIC COMPOUNDS		Met	nod: SW8260 0	;			Analyst: PM
1,1,1,2-Tetrachloroethane	U		0.28	1.0	μg/L	1	4/12/2019 01:35
1,1,1-Trichloroethane	U		0.33	1.0	μg/L	1	4/12/2019 01:35
1,1,2,2-Tetrachloroethane	U		0.17	1.0	μg/L	1	4/12/2019 01:35
1,1,2-Trichloroethane	U		0.22	1.0	μg/L	1	4/12/2019 01:35
1,1,2-Trichlorotrifluoroethane	U		0.18	1.0	μg/L	1	4/12/2019 01:35
1,1-Dichloroethane	U		0.48	1.0	μg/L	1	4/12/2019 01:35
1,1-Dichloroethene	U		0.36	1.0	μg/L	1	4/12/2019 01:35
1,1-Dichloropropene	U		0.28	1.0	μg/L	1	4/12/2019 01:35
1,2,3-Trichlorobenzene	U		0.29	1.0	μg/L	1	4/12/2019 01:35
1,2,3-Trichloropropane	U		0.29	1.0	μg/L	1	4/12/2019 01:35
1,2,4-Trichlorobenzene	U		0.25	1.0	μg/L	1	4/12/2019 01:35
1,2,4-Trimethylbenzene	U		0.11	1.0	μg/L	1	4/12/2019 01:35
1,2-Dibromo-3-chloropropane	U		0.43	1.0	μg/L	1	4/12/2019 01:35
1,2-Dibromoethane	U		0.17	1.0	μg/L	1	4/12/2019 01:35
1.2-Dichlorobenzene	U		0.12	1.0	μg/L	1	4/12/2019 01:35
1,2-Dichloroethane	U		0.11	1.0	μg/L	1	4/12/2019 01:35
1,2-Dichloropropane	U		0.34	1.0	μg/L	1	4/12/2019 01:35
1,3,5-Trichlorobenzene	U		0.25	1.0	μg/L	1	4/12/2019 01:35
1,3,5-Trimethylbenzene	U		0.15	1.0	μg/L	1	4/12/2019 01:35
1,3-Dichlorobenzene	U		0.13	1.0	μg/L	1	4/12/2019 01:35
1,3-Dichloropropane	U		0.14	1.0	μg/L	1	4/12/2019 01:35
1,4-Dichlorobenzene	U		0.13	1.0	μg/L	1	4/12/2019 01:35
2,2-Dichloropropane	U		0.31	1.0	μg/L	1	4/12/2019 01:35
2-Butanone	U		0.47	5.0	μg/L	1	4/12/2019 01:35
2-Chloroethyl vinyl ether	U		0.14	1.0	μg/L	1	4/12/2019 01:35
2-Chlorotoluene	U		0.14	1.0	μg/L	1	4/12/2019 01:35
2-Hexanone	U		0.50	5.0	μg/L	1	4/12/2019 01:35
2-Methylnaphthalene	0.40	J	0.28	5.0	μg/L	1	4/12/2019 01:35
4-Chlorotoluene	U		0.18	1.0	μg/L	1	4/12/2019 01:35
4-Isopropyltoluene	U		0.10	1.0	μg/L	1	4/12/2019 01:35
4-Methyl-2-pentanone	U		0.52	1.0	μg/L	1	4/12/2019 01:35
Acetone	1.5	J	0.47	10	μg/L	1	4/12/2019 01:35
Acrolein	U		0.38	1.0	μg/L	1	4/12/2019 01:35
Acrylonitrile	U		0.34	1.0	μg/L	1	4/12/2019 01:35
Benzene	U		0.42	1.0	μg/L	1	4/12/2019 01:35
Benzyl chloride	U		0.20	1.0	μg/L	1	4/12/2019 01:35
Bromobenzene	U		0.13	1.0	μg/L	1	4/12/2019 01:35
Bromochloromethane	U		0.15	1.0	μg/L	1	4/12/2019 01:35

Client:

BB&E, Inc.

Project:

SSW Collis 2019 LTM Task 1

Sample ID:

COL-GW-01

Collection Date: 4/8/2019 09:35 AM

Date: 18-Apr-19

Work Order: 1904634

Lab ID: 1904634-01

Matrix: GROUNDWATER

Analyses	Result Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
Bromodichloromethane	U	0.22	1.0	μg/L	1	4/12/2019 01:35
Bromoform	U	0.56	1.0	μg/L	1	4/12/2019 01:35
Bromomethane	U	0.29	1.0	µg/L	1	4/12/2019 01:35
Carbon disulfide	U	0.39	1.0	µg/L	1	4/12/2019 01:35
Carbon tetrachloride	U	0.32	1.0	μg/L	1	4/12/2019 01:35
Chlorobenzene	U	0.21	1.0	µg/L	1	4/12/2019 01:35
Chloroethane	U	0.68	1.0	μg/L	1	4/12/2019 01:35
Chloroform	U	0.46	1.0	μg/L	1	4/12/2019 01:35
Chloromethane	U	0.68	1.0	μg/L	1	4/12/2019 01:35
cis-1,2-Dichloroethene	U	0.38	1.0	μg/L	1	4/12/2019 01:35
cis-1,3-Dichloropropene	U	0.13	1.0	μg/L	1	4/12/2019 01:35
Dibromochloromethane	U	0.20	1.0	μg/L	1	4/12/2019 01:35
Dibromomethane	U	0.16	1.0	μg/L	1	4/12/2019 01:35
Dichlorodifluoromethane	U	0.30	1.0	μg/L	1	4/12/2019 01:35
Ethylbenzene	U	0.29	1.0	μg/L	1	4/12/2019 01:35
Hexachlorobutadiene	U	0.15	1.0	μg/L	1	4/12/2019 01:35
Hexachloroethane	U	0.15	1.0	μg/L	1	4/12/2019 01:35
Hexane	Ū	0.18	1.0	μg/L	1	4/12/2019 01:35
lodomethane	U	0.44	1.0	μg/L	1	4/12/2019 01:35
Isopropylbenzene	U	0.17	1.0	μg/L	1	4/12/2019 01:35
m,p-Xylene	U	0.53	2.0	μg/L	1	4/12/2019 01:35
Methyl tert-butyl ether	U	0.21	1.0	μg/L	1	4/12/2019 01:35
Methylene chloride	U	0.16	5.0	μg/L	1	4/12/2019 01:35
Naphthalene	U	0.14	5.0	μg/L	1	4/12/2019 01:35
n-Butylbenzene	U	0.090	1.0	μg/L	1	4/12/2019 01:35
n-Propylbenzene	U	0.16	1.0	μg/L	1	4/12/2019 01:35
o-Xylene	U	0.19	1.0	μg/L	1	
p-Isopropyltoluene	U	0.10	1.0	μg/L	1	4/12/2019 01:35
sec-Butylbenzene	U	0.11	1.0	μg/L	1	4/12/2019 01:35 4/12/2019 01:35
Styrene	U	0.19	1.0	μg/L	1	
tert-Butyl alcohol	2.3 J	2.2	20	μg/L	1	4/12/2019 01:35
ert-Butylbenzene	U	0.10	1.0	μ g/L μg/L	1	4/12/2019 01:35
Tetrachloroethene	U	0.28	1.0	μg/L	1	4/12/2019 01:35
Tetrahydrofuran	U	0.49	1.0			4/12/2019 01:35
Toluene	U	0.49	1.0	μg/L μg/L	1 1	4/12/2019 01:35
rans-1,2-Dichloroethene	Ü	0.32	1.0			4/12/2019 01:35
rans-1,3-Dichloropropene	U	0.46	1.0	μg/L	1	4/12/2019 01:35
rans-1,4-Dichloro-2-butene	U	0.13	2.0	μg/L	1	4/12/2019 01:35
Frichloroethene	U	0.33	1.0	μg/L	1	4/12/2019 01:35
Trichlorofluoromethane	U	0.33	1.0	μg/L μg/L	1	4/12/2019 01:35

Note:

Client:

BB&E, Inc.

Project:

SSW Collis 2019 LTM Task 1

Sample ID:

COL-GW-01

Collection Date: 4/8/2019 09:35 AM

Date: 18-Apr-19

Work Order: 1904634

Lab ID: 1904634-01

Matrix: GROUNDWATER

Analyses	Result Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
Vinyl acetate	U	0.42	5.0	μg/L	1	4/12/2019 01:35
Vinyl chloride	U	0.53	1.0	μg/L	1	4/12/2019 01:35
Surr: 1.2-Dichloroethane-d4	98.5		75-120	%REC	1	4/12/2019 01:35
Surr: 4-Bromofluorobenzene	97.8		80-110	%REC	1	4/12/2019 01:35
Surr: Dibromofluoromethane	97.0		85-115	%REC	1	4/12/2019 01:35
Surr: Toluene-d8	101		85-110	%REC	1	4/12/2019 01:35

Client:

BB&E, Inc.

Project:

SSW Collis 2019 LTM Task 1

Sample ID:

COL-GW-02

Collection Date: 4/8/2019 10:20 AM

Date: 18-Apr-19

Work Order: 1904634

Lab ID: 1904634-02

Matrix: GROUNDWATER

Analyses	Result Q)ual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
VOLATILE ORGANIC COMPOUNDS		Method:	SW82600	:			Analyst: PM
1,1,1,2-Tetrachloroethane	U		0.28	1.0	μg/L	1	4/12/2019 01:51
1,1,1-Trichloroethane	U		0.33	1.0	μg/L	1	4/12/2019 01:51
1,1,2,2-Tetrachloroethane	U		0.17	1.0	μg/L	1	4/12/2019 01:51
1,1,2-Trichloroethane	U		0.22	1.0	μg/L	1	4/12/2019 01:51
1,1,2-Trichlorotrifluoroethane	U		0.18	1.0	µg/L	1	4/12/2019 01:51
1,1-Dichloroethane	U		0.48	1.0	μg/L	1	4/12/2019 01:51
1,1-Dichloroethene	U		0.36	1.0	μg/L	1	4/12/2019 01:51
1,1-Dichloropropene	U		0.28	1.0	μg/L	1	4/12/2019 01:51
1,2,3-Trichlorobenzene	U		0.29	1.0	μg/L	1	4/12/2019 01:51
1,2,3-Trichloropropane	U		0.29	1.0	μg/L	1	4/12/2019 01:51
1,2,4-Trichlorobenzene	U		0.25	1.0	μg/L	1	4/12/2019 01:51
1,2,4-Trimethylbenzene	U		0.11	1.0	μg/L	1	4/12/2019 01:51
1,2-Dibromo-3-chloropropane	U		0.43	1.0	μg/L	1	4/12/2019 01:51
1,2-Dibromoethane	U		0.17	1.0	μg/L	1	4/12/2019 01:51
1,2-Dichlorobenzene	U		0.12	1.0	μg/L	1	4/12/2019 01:51
1,2-Dichloroethane	U		0.11	1.0	μg/L	1	4/12/2019 01:51
1,2-Dichloropropane	U		0.34	1.0	μg/L	1	4/12/2019 01:51
1,3,5-Trichlorobenzene	U		0.25	1.0	μg/L	1	4/12/2019 01:51
1,3,5-Trimethylbenzene	U		0.15	1.0	μg/L	1	4/12/2019 01:51
1,3-Dichlorobenzene	U		0.13	1.0	μg/L	1	4/12/2019 01:51
1,3-Dichloropropane	U		0.14	1.0	μg/L	1	4/12/2019 01:51
1,4-Dichlorobenzene	U		0.13	1.0	μg/L	1	4/12/2019 01:51
2,2-Dichloropropane	U		0.31	1.0	μg/L	1	4/12/2019 01:51
2-Butanone	U		0.47	5.0	µg/L	1	4/12/2019 01:51
2-Chloroethyl vinyl ether	U		0.14	1.0	μg/L	1	4/12/2019 01:51
2-Chlorotoluene	U		0.14	1.0	μg/L	1	4/12/2019 01:51
2-Hexanone	U		0.50	5.0	µg/L	1	4/12/2019 01:51
2-Methylnaphthalene	U		0.28	5.0	μg/L	1	4/12/2019 01:51
4-Chlorotoluene	U		0.18	1.0	µg/L	1	4/12/2019 01:51
4-Isopropyltoluene	U		0.10	1.0	μg/L	1	4/12/2019 01:51
4-Methyl-2-pentanone	U		0.52	1.0	μg/L	1	4/12/2019 01:51
Acetone	3.2	J	0.47	10	μg/L	1	4/12/2019 01:51
Acrolein	U		0.38	1.0	μg/L	1	4/12/2019 01:51
Acrylonitrile	U		0.34	1.0	μg/L	1	4/12/2019 01:51
Benzene	U		0.42	1.0	μg/L	1	4/12/2019 01:51
Benzyl chloride	U		0.20	1.0	µg/L	1	4/12/2019 01:51
Bromobenzene	U		0.13	1.0	μg/L	1	4/12/2019 01:51
Bromochloromethane	Ü		0.15	1.0	μg/L	1	4/12/2019 01:51

Note:

Client:

BB&E, Inc.

Project:

SSW Collis 2019 LTM Task 1

Sample ID:

COL-GW-02

Collection Date: 4/8/2019 10:20 AM

Date: 18-Apr-19

Work Order: 1904634

Lab ID: 1904634-02

Matrix: GROUNDWATER

Analyses	Result Qu	al MDL	Report Limit	Units	Dilution Factor	Date Analyzed
Bromodichloromethane	U	0.22	1.0	μg/L	1	4/12/2019 01:51
Bromoform	U	0.56	1.0	μg/L	1	4/12/2019 01:51
Bromomethane	U	0.29	1.0	μg/L	1	4/12/2019 01:51
Carbon disulfide	U	0.39	1.0	μg/L	1	4/12/2019 01:51
Carbon tetrachloride	U	0.32	1.0	μg/L	1	4/12/2019 01:51
Chlorobenzene	U	0.21	1.0	μg/L	1	4/12/2019 01:51
Chloroethane	U	0.68	1.0	μg/L	1	4/12/2019 01:51
Chloroform	U	0.46	1.0	μg/L	1	4/12/2019 01:5
Chloromethane	2.1	0.68	1.0	μg/L	1	4/12/2019 01:51
cis-1,2-Dichloroethene	U	0.38	1.0	μg/L	1	4/12/2019 01:5
cis-1,3-Dichloropropene	U	0.13	1.0	μg/L	1	4/12/2019 01:5
Dibromochloromethane	U	0.20	1.0	μg/L	1	4/12/2019 01:5
Dibromomethane	U	0.16	1.0	μg/L	1	4/12/2019 01:5
Dichlorodifluoromethane	U	0.30	1.0	μg/L	1	4/12/2019 01:5
Ethylbenzene	U	0.29	1.0	μg/L	1	4/12/2019 01:5
Hexachlorobutadiene	U	0.15	1.0	μg/L	1	4/12/2019 01:5
Hexachloroethane	U	0.15	1.0	μg/L	1	4/12/2019 01:5
Hexane	U	0.18	1.0	μg/L	1	4/12/2019 01:5
lodomethane	U	0.44	1.0	μg/L	1	4/12/2019 01:5
Isopropylbenzene	U	0.17	1.0	μg/L	1	4/12/2019 01:5
m,p-Xylene	U	0.53	2.0	μg/L	1	4/12/2019 01:5
Methyl tert-butyl ether	U	0.21	1.0	μg/L	1	4/12/2019 01:5
Methylene chloride	U	0.16	5.0	μg/L	1	4/12/2019 01:5
Naphthalene	Ü	0.14	5.0	μg/L	1	4/12/2019 01:5
n-Butylbenzene	U	0.090	1.0	µg/L	1	4/12/2019 01:5
n-Propylbenzene	U	0.16	1.0	μg/L	1	4/12/2019 01:5
o-Xylene	U	0.19	1.0	μg/L	1	4/12/2019 01:5
p-Isopropyltoluene	U	0.10	1.0	μg/L	1	4/12/2019 01:5
sec-Butylbenzene	U	0.11	1.0	μg/L	1	4/12/2019 01:5
Styrene	U	0.19	1.0	μg/L	1	4/12/2019 01:5
tert-Butyl alcohol	5.4	J 2.2	20	μg/L	1	4/12/2019 01:5
tert-Butyl benzene	U	0.10	1.0	μg/L	1	4/12/2019 01:5
Tetrachloroethene	U	0.28	1.0	μg/L	1	4/12/2019 01:5
Tetrahydrofuran	U	0.49	1.0	μg/L	1	4/12/2019 01:5
Toluene	U	0.32	1.0	μg/L	1	4/12/2019 01:5
trans-1,2-Dichloroethene	U	0.48	1.0	μg/L	1	4/12/2019 01:5
trans-1,3-Dichloropropene	Ü	0.15	1.0	μg/L	1	4/12/2019 01:5
trans-1,4-Dichloro-2-butene	Ü	0.58	2.0	μg/L	1	4/12/2019 01:5
Trichloroethene	Ü	0.33	1.0	μg/L	1	4/12/2019 01:5
Trichlorofluoromethane	Ü	0.24	1.0	μg/L	1	4/12/2019 01:5

Note:

Client:

BB&E, Inc.

Project:

SSW Collis 2019 LTM Task 1

Sample ID:

COL-GW-02

Collection Date: 4/8/2019 10:20 AM

Date: 18-Apr-19

Work Order: 1904634

Lab ID: 1904634-02

Matrix: GROUNDWATER

Analyses	Result Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
Vinyl acetate	U	0.42	5.0	μg/L	1	4/12/2019 01:51
Vinyl chloride	U	0.53	1.0	μg/L	1	4/12/2019 01:51
Surr: 1,2-Dichloroethane-d4	96.9		75-120	%REC	1	4/12/2019 01:51
Surr: 4-Bromofluorobenzene	99.3		80-110	%REC	1	4/12/2019 01:51
Surr: Dibromofluoromethane	95.6		85-115	%REC	1	4/12/2019 01:51
Surr: Toluene-d8	99.4		85-110	%REC	1	4/12/2019 01:51

Client:

BB&E, Inc.

Project:

SSW Collis 2019 LTM Task 1

Sample ID:

COL-GW-03

Collection Date: 4/8/2019 11:00 AM

Date: 18-Apr-19

Work Order: 1904634

Lab ID: 1904634-03

Matrix: GROUNDWATER

Analyses	Result	Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
VOLATILE ORGANIC COMPOUNDS		Met	hod: SW8260 0	:			Analyst: PM
1,1,1,2-Tetrachloroethane	U		0.28	1.0	μg/L	1	4/12/2019 02:08
1,1,1-Trichloroethane	U		0.33	1.0	μg/L	1	4/12/2019 02:08
1,1,2,2-Tetrachloroethane	U		0.17	1.0	μg/L	1	4/12/2019 02:08
1,1,2-Trichloroethane	U		0.22	1.0	μg/L	1	4/12/2019 02:08
1,1,2-Trichlorotrifluoroethane	U		0.18	1.0	μg/L	1	4/12/2019 02:08
1,1-Dichloroethane	U		0.48	1.0	μg/L	1	4/12/2019 02:08
1,1-Dichloroethene	U		0.36	1.0	μg/L	1	4/12/2019 02:08
1,1-Dichloropropene	U		0.28	1.0	μg/L	1	4/12/2019 02:08
1,2,3-Trichlorobenzene	U		0.29	1.0	μg/L	1	4/12/2019 02:08
1,2,3-Trichloropropane	U		0.29	1.0	μg/L	1	4/12/2019 02:08
1,2,4-Trichlorobenzene	U		0.25	1.0	μg/L	1	4/12/2019 02:08
1,2,4-Trimethylbenzene	U		0.11	1.0	μg/L	1	4/12/2019 02:08
1,2-Dibromo-3-chloropropane	U		0.43	1.0	μg/L	1	4/12/2019 02:08
1,2-Dibromoethane	U		0.17	1.0	μg/L	1	4/12/2019 02:08
1,2-Dichlorobenzene	U		0.12	1.0	μg/L	1	4/12/2019 02:08
1,2-Dichloroethane	U		0.11	1.0	μg/L	1	4/12/2019 02:08
1,2-Dichloropropane	U		0.34	1.0	μg/L	1	4/12/2019 02:08
1,3,5-Trichlorobenzene	U		0.25	1.0	μg/L	1	4/12/2019 02:08
1,3,5-Trimethylbenzene	U		0.15	1.0	μg/L	1	4/12/2019 02:08
1.3-Dichlorobenzene	U		0.13	1.0	μg/L	1	4/12/2019 02:08
1,3-Dichloropropane	U		0.14	1.0	μg/L	1	4/12/2019 02:08
1,4-Dichlorobenzene	U		0.13	1.0	μg/L	1	4/12/2019 02:08
2,2-Dichloropropane	U		0.31	1.0	μg/L	1	4/12/2019 02:08
2-Butanone	U		0.47	5.0	μg/L	1	4/12/2019 02:08
2-Chloroethyl vinyl ether	U		0.14	1.0	μg/L	1	4/12/2019 02:08
2-Chlorotoluene	U		0.14	1.0	μg/L	1	4/12/2019 02:08
2-Hexanone	U		0.50	5.0	μg/L	1	4/12/2019 02:08
2-Methylnaphthalene	0.37	J	0.28	5.0	μg/L	1	4/12/2019 02:08
4-Chlorotoluene	U		0.18	1.0	μg/L	1	4/12/2019 02:08
4-Isopropyltoluene	U		0.10	1.0	μg/L	1	4/12/2019 02:08
4-Methyl-2-pentanone	U		0.52	1.0	μg/L	1	4/12/2019 02:08
Acetone	2.9	J	0.47	10	μg/L	1	4/12/2019 02:08
Acrolein	U		0.38	1.0	μg/L	1	4/12/2019 02:08
Acrylonitrile	U		0.34	1.0	μg/L	1	4/12/2019 02:08
Benzene	U		0.42	1.0	μg/L	1	4/12/2019 02:08
Benzyl chloride	U		0.20	1.0	μg/L	1	4/12/2019 02:08
Bromobenzene	U		0.13	1.0	μg/L	1	4/12/2019 02:08
Bromochloromethane	U		0.15	1.0	μg/L	1	4/12/2019 02:08

Note:

Client:

BB&E, Inc.

Project:

SSW Collis 2019 LTM Task 1

Sample ID:

COL-GW-03

Collection Date: 4/8/2019 11:00 AM

Date: 18-Apr-19

Work Order: 1904634

Lab ID: 1904634-03

Matrix: GROUNDWATER

Analyses	Result Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
Bromodichloromethane	U	0.22	1.0	μg/L	1	4/12/2019 02:08
Bromoform	U	0.56	1.0	µg/L	1	4/12/2019 02:08
Bromomethane	U	0.29	1.0	μg/L	1	4/12/2019 02:08
Carbon disulfide	U	0.39	1.0	μg/L	1	4/12/2019 02:08
Carbon tetrachloride	U	0.32	1.0	μg/L	1	4/12/2019 02:08
Chlorobenzene	U	0.21	1.0	μg/L	1	4/12/2019 02:08
Chloroethane	U	0.68	1.0	μg/L	1	4/12/2019 02:08
Chloroform	U	0.46	1.0	μg/L	1	4/12/2019 02:08
Chloromethane	2.0	0.68	1.0	μg/L	1	4/12/2019 02:08
cis-1,2-Dichloroethene	U	0.38	1.0	μg/L	1	4/12/2019 02:08
cis-1,3-Dichloropropene	U	0.13	1.0	μg/L	1	4/12/2019 02:08
Dibromochloromethane	U	0.20	1.0	μg/L	1	4/12/2019 02:08
Dibromomethane	U	0.16	1.0	µg/L	1	4/12/2019 02:08
Dichlorodifluoromethane	U	0.30	1.0	μg/L	1	4/12/2019 02:08
Ethylbenzene	U	0.29	1.0	μg/L	1	4/12/2019 02:08
Hexachlorobutadiene	U	0.15	1.0	μg/L	1	4/12/2019 02:08
Hexachloroethane	U	0.15	1.0	μg/L	1	4/12/2019 02:08
Hexane	U	0.18	1.0	μg/L	1	4/12/2019 02:08
lodomethane	U	0.44	1.0	µg/L	1	4/12/2019 02:08
Isopropylbenzene	U	0.17	1.0	µg/L	1	4/12/2019 02:08
m,p-Xylene	U	0.53	2.0	μg/L	1	4/12/2019 02:08
Methyl tert-butyl ether	U	0.21	1.0	µg/L	1	4/12/2019 02:08
Methylene chloride	U	0.16	5.0	μg/L	1	4/12/2019 02:08
Naphthalene	U	0.14	5.0	µg/L	1	4/12/2019 02:08
n-Butylbenzene	U	0.090	1.0	μg/L	1	4/12/2019 02:08
n-Propylbenzene	U	0.16	1.0	μg/L	1	4/12/2019 02:08
o-Xylene	Ü	0.19	1.0	μg/L	1	4/12/2019 02:08
p-Isopropyltoluene	U	0.10	1.0	μg/L	1	4/12/2019 02:08
sec-Butylbenzene	U	0.11	1.0	μg/L	1	4/12/2019 02:08
Styrene	U	0.19	1.0	μg/L	1	4/12/2019 02:08
tert-Butyl alcohol	4.5 J	2.2	20	μg/L	1	
tert-Butylbenzene	U	0.10	1.0	μg/L μg/L	1	4/12/2019 02:08 4/12/2019 02:08
Tetrachloroethene	U	0.28	1.0	μg/L	1	
Tetrahydrofuran	U	0.49	1.0	μg/L μg/L	1	4/12/2019 02:08 4/12/2019 02:08
Toluene	U	0.49	1.0	μg/L μg/L	1	
trans-1,2-Dichloroethene	U	0.32	1.0	μg/L μg/L	1	4/12/2019 02:08
trans-1,3-Dichloropropene	Ü	0.46	1.0	μg/L μg/L	1	4/12/2019 02:08
trans-1,4-Dichloro-2-butene	Ü	0.13	2.0			4/12/2019 02:08
Trichloroethene	U	0.33	1.0	μg/L	1	4/12/2019 02:08
Trichlorofluoromethane	U	0.33	1.0	μg/L μg/L	1	4/12/2019 02:08 4/12/2019 02:08

Note:

Client:

BB&E, Inc.

Project:

SSW Collis 2019 LTM Task 1

Sample ID:

COL-GW-03

Collection Date: 4/8/2019 11:00 AM

Date: 18-Apr-19

Work Order: 1904634

Lab ID: 1904634-03

Matrix: GROUNDWATER

Analyses	Result Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
Vinyl acetate	U	0.42	5.0	μg/L	1	4/12/2019 02:08
Vinyl chloride	U	0.53	1.0	μg/L	1	4/12/2019 02:08
Surr: 1,2-Dichloroethane-d4	99.4		75-120	%REC	1	4/12/2019 02:08
Surr: 4-Bromofluorobenzene	98.9		80-110	%REC	1	4/12/2019 02:08
Surr: Dibromofluoromethane	96.6		85-115	%REC	1	4/12/2019 02:08
Surr: Toluene-d8	99.6		85-110	%REC	1	4/12/2019 02:08

Client:

BB&E, Inc.

Project:

SSW Collis 2019 LTM Task 1

Sample ID:

COL-GW-04

Collection Date: 4/8/2019 12:10 PM

Date: 18-Apr-19

Work Order: 1904634

Lab ID: 1904634-04

Matrix: GROUNDWATER

Analyses	Result	Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
1,4-DIOXANE BY SELECT ION MONITORIN	G	Meth	nod: SW8260B				Analyst: PM
1,4-Dioxane	U		0.44	0.60	μg/L	1	4/10/2019 15:22
Surr: Toluene-d8	105			74-124	%REC	1	4/10/2019 15:22
VOLATILE ORGANIC COMPOUNDS		Meth	nod: SW8260C				Analyst: PM
1,1,1,2-Tetrachloroethane	U		0.28	1.0	μg/L	1	4/12/2019 02:24
1,1,1-Trichloroethane	U		0.33	1.0	μg/L	1	4/12/2019 02:24
1,1,2,2-Tetrachloroethane	U		0.17	1.0	μg/L	1	4/12/2019 02:24
1,1,2-Trichloroethane	U		0.22	1.0	μg/L	1	4/12/2019 02:24
1,1,2-Trichlorotrifluoroethane	U		0.18	1.0	μg/L	1	4/12/2019 02:24
1,1-Dichloroethane	U		0.48	1.0	μg/L	1	4/12/2019 02:24
1,1-Dichloroethene	U		0.36	1.0	μg/L	1	4/12/2019 02:24
1,1-Dichloropropene	U		0.28	1.0	μg/L	1	4/12/2019 02:24
1,2,3-Trichlorobenzene	U		0.29	1.0	μg/L	1	4/12/2019 02:24
1,2,3-Trichloropropane	U		0.29	1.0	μg/L	1	4/12/2019 02:24
1,2,4-Trichlorobenzene	U		0.25	1.0	μg/L	1	4/12/2019 02:24
1,2,4-Trimethylbenzene	U		0.11	1.0	μg/L	1	4/12/2019 02:24
1,2-Dibromo-3-chloropropane	Ū		0.43	1.0	μg/L	1	4/12/2019 02:24
1,2-Dibromoethane	U		0.17	1.0	μg/L	1	4/12/2019 02:24
1,2-Dichlorobenzene	Ü		0.12	1.0	μg/L	1	
1,2-Dichloroethane	Ū		0.11	1.0	μg/L μg/L	1	4/12/2019 02:24
1,2-Dichloropropane	U		0.34	1.0	μg/L μg/L	1	4/12/2019 02:24
1,3,5-Trichlorobenzene	U		0.25	1.0	μg/L μg/L		4/12/2019 02:24
1,3,5-Trimethylbenzene	U		0.25	1.0	μg/L μg/L	1	4/12/2019 02:24
1,3-Dichlorobenzene	U		0.13	1.0	. 0	1	4/12/2019 02:24
1,3-Dichloropropane	U		0.13	1.0	μg/L	1	4/12/2019 02:24
1,4-Dichlorobenzene	U		0.14	1.0	μg/L	1	4/12/2019 02:24
2,2-Dichloropropane	U		0.13		μg/L	1	4/12/2019 02:24
2-Butanone	U		0.31	1.0	μg/L	1	4/12/2019 02:24
2-Chloroethyl vinyl ether	U		0.47	5.0	μg/L	1	4/12/2019 02:24
2-Chlorotoluene	U			1.0	μg/L	1	4/12/2019 02:24
2-Hexanone	U		0.14	1.0	μg/L	1	4/12/2019 02:24
2-Methylnaphthalene	U		0.50	5.0	μg/L	1	4/12/2019 02:24
4-Chlorotoluene	U		0.28	5.0	μg/L	1	4/12/2019 02:24
4-Isopropyltoluene			0.18	1.0	μg/L	1	4/12/2019 02:24
4-Methyl-2-pentanone	U		0.10	1.0	μg/L	1	4/12/2019 02:24
Acetone	U		0.52	1.0	μg/L	1	4/12/2019 02:24
Acrolein	1.2	J	0.47	10	µg/L	1	4/12/2019 02:24
Acrylonitrile	U		0.38	1.0	µg/L	1	4/12/2019 02:24
Benzene	U		0.34	1.0	μg/L 	1	4/12/2019 02:24
Delizerie	U		0.42	1.0	µg/L	1	4/12/2019 02:24

Client:

BB&E, Inc.

Project:

SSW Collis 2019 LTM Task 1

Sample ID:

COL-GW-04

Collection Date: 4/8/2019 12:10 PM

Date: 18-Apr-19

Work Order: 1904634

Lab ID: 1904634-04

Matrix: GROUNDWATER

Analyses	Result Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
Benzyl chloride	U	0.20	1.0	μg/L	1	4/12/2019 02:24
Bromobenzene	U	0.13	1.0	μg/L	1	4/12/2019 02:24
Bromochloromethane	U	0.15	1.0	μg/L	1	4/12/2019 02:24
Bromodichloromethane	U	0.22	1.0	μg/L	1	4/12/2019 02:24
Bromoform	U	0.56	1.0	μg/L	1	4/12/2019 02:24
Bromomethane	U	0.29	1.0	μg/L	1	4/12/2019 02:24
Carbon disulfide	U	0.39	1.0	μg/L	1	4/12/2019 02:24
Carbon tetrachloride	U	0.32	1.0	μg/L	1	4/12/2019 02:24
Chlorobenzene	U	0.21	1.0	μg/L	1	4/12/2019 02:24
Chloroethane	U	0.68	1.0	μg/L	1	4/12/2019 02:24
Chloroform	U	0.46	1.0	μg/L	1	4/12/2019 02:24
Chloromethane	U	0.68	1.0	μg/L	1	4/12/2019 02:24
cis-1,2-Dichloroethene	87	0.38	1.0	μg/L	1	4/12/2019 02:24
cis-1,3-Dichloropropene	U	0.13	1.0	μg/L	1	4/12/2019 02:24
Dibromochloromethane	U	0.20	1.0	μg/L	1	4/12/2019 02:24
Dibromomethane	U	0.16	1.0	μg/L	1	4/12/2019 02:24
Dichlorodifluoromethane	U	0.30	1.0	μg/L	1	4/12/2019 02:24
Ethylbenzene	U	0.29	1.0	μg/L	1	4/12/2019 02:24
Hexachlorobutadiene	U	0.15	1.0	μg/L	1	4/12/2019 02:24
Hexachloroethane	U	0.15	1.0	μg/L	1	4/12/2019 02:24
Hexane	U	0.18	1.0	μg/L	1	4/12/2019 02:24
lodomethane	U	0.44	1.0	μg/L	1	4/12/2019 02:24
Isopropylbenzene	U	0.17	1.0	μg/L	1	4/12/2019 02:24
m,p-Xylene	U	0.53	2.0	μg/L	1	4/12/2019 02:24
Methyl tert-butyl ether	U	0.21	1.0	μg/L	1	4/12/2019 02:24
Methylene chloride	U	0.16	5.0	μg/L	1	4/12/2019 02:24
Naphthalene	U	0.14	5.0	μg/L	1	4/12/2019 02:24
n-Butylbenzene	U	0.090	1.0	μg/L	1	4/12/2019 02:24
n-Propylbenzene	U	0.16	1.0	μg/L	1	4/12/2019 02:24
o-Xylene	U	0.19	1.0	μg/L	1	4/12/2019 02:24
p-Isopropyltoluene	U	0.10	1.0	μg/L	1	4/12/2019 02:24
sec-Butylbenzene	U	0.11	1.0	μg/L	1	4/12/2019 02:24
Styrene	U	0.19	1.0	μg/L	1	4/12/2019 02:24
tert-Butyl alcohol	3.6 J	2.2	20	μg/L	1	4/12/2019 02:24
tert-Butylbenzene	U	0.10	1.0	μg/L	1	4/12/2019 02:2
Tetrachloroethene	U	0.28	1.0	μg/L	1	4/12/2019 02:24
Tetrahydrofuran	U	0.49	1.0	μg/L	1	4/12/2019 02:2
Toluene	U	0.32	1.0	μg/L	1	4/12/2019 02:24
trans-1,2-Dichloroethene	2.5	0.48	1.0	μg/L	1	4/12/2019 02:24
trans-1,3-Dichloropropene	U	0.15	1.0	μg/L	1	4/12/2019 02:24

Note:

Client:

BB&E, Inc.

Project:

SSW Collis 2019 LTM Task 1

Sample ID:

COL-GW-04

Collection Date: 4/8/2019 12:10 PM

Date: 18-Apr-19

Work Order: 1904634

Lab ID: 1904634-04

Matrix: GROUNDWATER

Analyses	Result Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
trans-1,4-Dichloro-2-butene	U	0.58	2.0	μg/L	1	4/12/2019 02:24
Trichloroethene	4.0	0.33	1.0	μg/L	1	4/12/2019 02:24
Trichlorofluoromethane	U	0.24	1.0	μg/L	1	4/12/2019 02:24
Vinyl acetate	U	0.42	5.0	μg/L	1	4/12/2019 02:24
Vinyl chloride	4.2	0.53	1.0	μg/L	1	4/12/2019 02:24
Surr: 1,2-Dichloroethane-d4	98.5		75-120	%REC	1	4/12/2019 02:24
Surr: 4-Bromofluorobenzene	96.6		80-110	%REC	1	4/12/2019 02:24
Surr: Dibromofluoromethane	97.2		85-115	%REC	1	4/12/2019 02:24
Surr: Toluene-d8	99.3		85-110	%REC	1	4/12/2019 02:24

Client:

BB&E, Inc.

Project:

SSW Collis 2019 LTM Task 1

Sample ID:

COL-GW-05

Collection Date: 4/8/2019 01:00 PM

Date: 18-Apr-19

Work Order: 1904634

Lab ID: 1904634-05

Matrix: GROUNDWATER

Analyses	Result	Qual MDL	Report Limit	Units	Dilution Factor	Date Analyzed
GASES IN WATER		Method: RSK-175				Analyst: KB
Ethane	U	0.21	5.0	μg/L	1	4/12/2019 15:03
Ethene	U	0.41	5.0	μg/L	1	4/12/2019 15:03
Methane	21	0.64	5.0	μg/L	1	4/12/2019 15:03
METALS BY ICP-MS (DISSOLVED)		Method: SW6020A		Prep: FIL	TER / 4/16/19	Analyst: STP
Iron	0.18	0.015	0.080	mg/L	1	4/16/2019 16:11
Manganese	0.045	0.00026	0.0050	mg/L	1	4/16/2019 16:11
1.4-DIOXANE BY SELECT ION MONITO	RING	Method: SW8260E	3			Analyst: PM
1.4-Dioxane	U	0.44	0.60	μg/L	1	4/10/2019 15:37
Surr: Toluene-d8	97.3		74-124	%REC	1	4/10/2019 15:37
VOLATILE ORGANIC COMPOUNDS		Method: SW82600	:			Analyst: PM
1,1,1,2-Tetrachloroethane	U	0.28	1.0	μg/L	1	4/12/2019 02:41
1,1,1-Trichloroethane	U	0.33	1.0	μg/L	1	4/12/2019 02:41
1,1,2,2-Tetrachloroethane	U	0.17	1.0	μg/L	1	4/12/2019 02:41
1,1,2-Trichloroethane	U	0.22	1.0	μg/L	1	4/12/2019 02:41
1,1,2-Trichlorotrifluoroethane	U	0.18	1.0	μg/L	1	4/12/2019 02:41
1,1-Dichloroethane	U	0.48	1.0	μg/L	1	4/12/2019 02:41
1,1-Dichloroethene	U	0.36	1.0	μg/L	1	4/12/2019 02:41
1,1-Dichloropropene	U	0.28	1.0	μg/L	1	4/12/2019 02:41
1,2,3-Trichlorobenzene	U	0.29	1.0	μg/L	1	4/12/2019 02:41
1,2,3-Trichloropropane	U	0.29	1.0	μg/L	1	4/12/2019 02:41
1,2,4-Trichlorobenzene	U	0.25	1.0	μg/L	1	4/12/2019 02:41
1,2,4-Trimethylbenzene	U	0.11	1.0	μg/L	1	4/12/2019 02:41
1,2-Dibromo-3-chloropropane	U	0.43	1.0	μg/L	1	4/12/2019 02:41
1,2-Dibromoethane	U	0.17	1.0	μg/L	1	4/12/2019 02:41
1,2-Dichlorobenzene	U	0.12	1.0	μg/L	1	4/12/2019 02:41
1,2-Dichloroethane	U	0.11	1.0	μg/L	1	4/12/2019 02:41
1,2-Dichloropropane	U	0.34	1.0	µg/L	1	4/12/2019 02:41
1,3,5-Trichlorobenzene	U	0.25	1.0	μg/L	1	4/12/2019 02:41
1,3,5-Trimethylbenzene	U	0.15	1.0	μg/L	1	4/12/2019 02:41
1,3-Dichlorobenzene	U	0.13	1.0	μg/L	1	4/12/2019 02:41
1,3-Dichloropropane	U	0.14	1.0	μg/L	1	4/12/2019 02:41
1,4-Dichlorobenzene	U	0.13	1.0	μg/L	1	4/12/2019 02:41
2,2-Dichloropropane	U	0.31	1.0	μg/L	1	4/12/2019 02:41
2-Butanone	U	0.47	5.0	μg/L	1	4/12/2019 02:41
2-Chloroethyl vinyl ether	U	0.14	1.0	μg/L	1	4/12/2019 02:41
2-Chlorotoluene	U	0.14	1.0	μg/L	1	4/12/2019 02:41
2-Hexanone	U	0.50	5.0	μg/L	1	4/12/2019 02:41

Note:

Client:

BB&E, Inc.

Project:

SSW Collis 2019 LTM Task 1

Sample ID:

COL-GW-05

Collection Date: 4/8/2019 01:00 PM

Date: 18-Apr-19

Work Order: 1904634

Lab ID: 1904634-05

Matrix: GROUNDWATER

Analyses	Result	Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
2-Methylnaphthalene	U		0.28	5.0	μg/L	1	4/12/2019 02:4
4-Chlorotoluene	U		0.18	1.0	μg/L	1	4/12/2019 02:4
4-Isopropyltoluene	U		0.10	1.0	μg/L	1	4/12/2019 02:4
4-Methyl-2-pentanone	U		0.52	1.0	μg/L	1	4/12/2019 02:4
Acetone	1.7	J	0.47	10	μg/L	1	4/12/2019 02:4
Acrolein	U		0.38	1.0	μg/L	1	4/12/2019 02:4
Acrylonitrile	U		0.34	1.0	μg/L	1	4/12/2019 02:4
Benzene	U		0.42	1.0	μg/L	1	4/12/2019 02:4
Benzyl chloride	U		0.20	1.0	μg/L	1	4/12/2019 02:4
Bromobenzene	U		0.13	1.0	μg/L	1	4/12/2019 02:4
Bromochloromethane	U		0.15	1.0	μg/L	1	4/12/2019 02:4
Bromodichloromethane	U		0.22	1.0	μg/L	1	4/12/2019 02:4
Bromoform	U		0.56	1.0	μg/L	1	4/12/2019 02:4
Bromomethane	U		0.29	1.0	μg/L	1	4/12/2019 02:4
Carbon disulfide	U		0.39	1.0	μg/L	1	4/12/2019 02:4
Carbon tetrachloride	U		0.32	1.0	μg/L	1	4/12/2019 02:4
Chlorobenzene	U		0.21	1.0	μg/L	1	4/12/2019 02:4
Chloroethane	U		0.68	1.0	μg/L	1	4/12/2019 02:4
Chloroform	U		0.46	1.0	μg/L	1	4/12/2019 02:4
Chloromethane	U		0.68	1.0	μg/L	1	4/12/2019 02:4
cis-1,2-Dichloroethene	12		0.38	1.0	μg/L	1	4/12/2019 02:4
cis-1,3-Dichloropropene	U		0.13	1.0	μg/L	1	4/12/2019 02:4
Dibromochloromethane	U		0.20	1.0	μg/L	1	4/12/2019 02:4
Dibromomethane	U		0.16	1.0	μg/L	1	4/12/2019 02:4
Dichlorodifluoromethane	U		0.30	1.0	μg/L	1	4/12/2019 02:41
Ethylbenzene	U		0.29	1.0	μg/L	1	4/12/2019 02:41
Hexachlorobutadiene	U		0.15	1.0	μg/L	1	4/12/2019 02:41
Hexachloroethane	U		0.15	1.0	μg/L	1	4/12/2019 02:41
Hexane	U		0.18	1.0	µg/L	1	4/12/2019 02:41
lodomethane	U		0.44	1.0	μg/L	1	4/12/2019 02:41
Isopropylbenzene	U		0.17	1.0	μg/L	1	4/12/2019 02:41
m,p-Xylene	U		0.53	2.0	μg/L	1	4/12/2019 02:41
Methyl tert-butyl ether	U		0.21	1.0	μg/L	1	4/12/2019 02:41
Methylene chloride	Ü		0.16	5.0	μg/L	1	4/12/2019 02:41
Naphthalene	Ü		0.14	5.0	μg/L	1	4/12/2019 02:41
n-Butylbenzene	Ü		0.090	1.0	μg/L μg/L	1	4/12/2019 02:41
n-Propylbenzene	U		0.090	1.0	μg/L μg/L	1	
o-Xylene	U		0.10	1.0	μg/L μg/L	1	4/12/2019 02:41
p-Isopropyltoluene	U		0.19	1.0		1	4/12/2019 02:41
sec-Butylbenzene	U		0.10	1.0	μg/L μg/L	1	4/12/2019 02:41 4/12/2019 02:41

Note:

Client: BE

BB&E, Inc.

Project: SSW Collis 2019 LTM Task 1

Sample ID:

COL-GW-05

Collection Date: 4/8/2019 01:00 PM

Date: 18-Apr-19

Work Order: 1904634

Lab ID: 1904634-05

Matrix: GROUNDWATER

Analyses	Result	Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
Styrene	U		0.19	1.0	μg/L	1	4/12/2019 02:41
tert-Butyl alcohol	3.0	J	2.2	20	μg/L	1	4/12/2019 02:41
tert-Butylbenzene	U		0.10	1.0	μg/L	1	4/12/2019 02:41
Tetrachloroethene	U		0.28	1.0	μg/L	1	4/12/2019 02:41
Tetrahydrofuran	U		0.49	1.0	µg/L	1	4/12/2019 02:41
Toluene	U		0.32	1.0	μg/L	1	4/12/2019 02:41
trans-1,2-Dichloroethene	0.59	J	0.48	1.0	μg/L	1	4/12/2019 02:41
trans-1,3-Dichloropropene	U		0.15	1.0	μg/L	1	4/12/2019 02:41
trans-1,4-Dichloro-2-butene	U		0.58	2.0	μg/L	1	4/12/2019 02:41
Trichloroethene	U		0.33	1.0	μg/L	1	4/12/2019 02:41
Trichlorofluoromethane	U		0.24	1.0	μg/L	1	4/12/2019 02:41
Vinyl acetate	U		0.42	5.0	μg/L	1	4/12/2019 02:41
Vinyl chloride	1.2		0.53	1.0	μg/L	1	4/12/2019 02:41
Surr: 1,2-Dichloroethane-d4	95.6			75-120	%REC	1	4/12/2019 02:41
Surr: 4-Bromofluorobenzene	99.0			80-110	%REC	1	4/12/2019 02:41
Surr: Dibromofluoromethane	96.3			85-115	%REC	1	4/12/2019 02:41
Surr: Toluene-d8	98.4			85-110	%REC	1	4/12/2019 02:41
ANIONS BY ION CHROMATOGRAPHY		M	lethod: SW90564				Analyst: JDR
Chloride	23		3.1	10	mg/L	10	4/15/2019 13:23
Sulfate	35		3.4	10	mg/L	10	4/15/2019 13:23
NITROGEN, NITRATE-NITRITE		M	lethod: E353.2 R	2.0			Analyst: JZB
Nitrogen, Nitrate-Nitrite	U		0.012	0.020	mg/L	1	4/12/2019 12:51
SULFIDE		M	lethod: SW9034				Analyst: RZM
Sulfide	U		0.42	1.0	mg/L	1	4/15/2019 14:30

Client:

BB&E, Inc.

Project:

SSW Collis 2019 LTM Task 1

Sample ID:

COL-GW-06

Collection Date: 4/8/2019 01:55 PM

Date: 18-Apr-19

Work Order: 1904634

Lab ID: 1904634-06

Matrix: GROUNDWATER

Analyses	Result	Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
VOLATILE ORGANIC COMPOUNDS		Meth	od: SW8260 0	:			Analyst: PM
1,1,1,2-Tetrachloroethane	U		0.28	1.0	μg/L	1	4/12/2019 02:58
1,1,1-Trichloroethane	U		0.33	1.0	μg/L	1	4/12/2019 02:58
1,1,2,2-Tetrachloroethane	U		0.17	1.0	μg/L	1	4/12/2019 02:58
1,1,2-Trichloroethane	U		0.22	1.0	μg/L	1	4/12/2019 02:58
1,1,2-Trichlorotrifluoroethane	U		0.18	1.0	μg/L	1	4/12/2019 02:58
1,1-Dichloroethane	U		0.48	1.0	μg/L	1	4/12/2019 02:58
1,1-Dichloroethene	U		0.36	1.0	μg/L	1	4/12/2019 02:58
1,1-Dichloropropene	U		0.28	1.0	μg/L	1	4/12/2019 02:58
1,2,3-Trichlorobenzene	U		0.29	1.0	μg/L	1	4/12/2019 02:58
1,2,3-Trichloropropane	U		0.29	1.0	μg/L	1	4/12/2019 02:58
1,2,4-Trichlorobenzene	U		0.25	1.0	μg/L	1	4/12/2019 02:58
1,2,4-Trimethylbenzene	U		0.11	1.0	μg/L	1	4/12/2019 02:58
1,2-Dibromo-3-chloropropane	U		0.43	1.0	μg/L	1	4/12/2019 02:58
1,2-Dibromoethane	U		0.17	1.0	μg/L	1	4/12/2019 02:58
1,2-Dichlorobenzene	U		0.12	1.0	μg/L	1	4/12/2019 02:58
1,2-Dichloroethane	U		0.11	1.0	μg/L	1	4/12/2019 02:58
1,2-Dichloropropane	U		0.34	1.0	μg/L	1	4/12/2019 02:58
1,3,5-Trichlorobenzene	U		0.25	1.0	μg/L	1	4/12/2019 02:58
1,3,5-Trimethylbenzene	U		0.15	1.0	μg/L	1	4/12/2019 02:58
1,3-Dichlorobenzene	U		0.13	1.0	μg/L	1	4/12/2019 02:58
1,3-Dichloropropane	U		0.14	1.0	μg/L	1	4/12/2019 02:58
1,4-Dichlorobenzene	U		0.13	1.0	μg/L	1	4/12/2019 02:58
2,2-Dichloropropane	U		0.31	1.0	μg/L	1	4/12/2019 02:58
2-Butanone	U		0.47	5.0	μg/L	1	4/12/2019 02:58
2-Chloroethyl vinyl ether	U		0.14	1.0	μg/L	1	4/12/2019 02:58
2-Chlorotoluene	U		0.14	1.0	μg/L	1	4/12/2019 02:58
2-Hexanone	U		0.50	5.0	μg/L	1	4/12/2019 02:58
2-Methylnaphthalene	0.37	J	0.28	5.0	μg/L	1	4/12/2019 02:58
4-Chlorotoluene	U		0.18	1.0	µg/L	1	4/12/2019 02:58
4-Isopropyltoluene	U		0.10	1.0	µg/L	1	4/12/2019 02:58
4-Methyl-2-pentanone	U		0.52	1.0	µg/L	1	4/12/2019 02:58
Acetone	2.0	J	0.47	10	μg/L	1	4/12/2019 02:58
Acrolein	U		0.38	1.0	μg/L	1	4/12/2019 02:58
Acrylonitrile	U		0.34	1.0	μg/L	1	4/12/2019 02:58
Benzene	U		0.42	1.0	μg/L	1	4/12/2019 02:58
Benzyl chloride	U		0.20	1.0	μg/L	1	4/12/2019 02:58
Bromobenzene	U		0.13	1.0	μg/L μg/L	1	
Bromochloromethane	Ü		0.15	1.0	μg/L	1	4/12/2019 02:58 4/12/2019 02:58

Note:

Date: 18-Apr-19

Client:

BB&E, Inc.

Project:

SSW Collis 2019 LTM Task 1

Sample ID:

COL-GW-06

Collection Date: 4/8/2019 01:55 PM

Work Order: 1904634

Lab ID: 1904634-06

Matrix: GROUNDWATER

nalyses	Result Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyze
Bromodichloromethane	U	0.22	1.0	μg/L	1	4/12/2019 02:5
Bromoform	U	0.56	1.0	μg/L	1	4/12/2019 02:5
Bromomethane	U	0.29	1.0	μg/L	1	4/12/2019 02:5
Carbon disulfide	U	0.39	1.0	μg/L	1	4/12/2019 02:5
Carbon tetrachloride	U	0.32	1.0	μg/L	1	4/12/2019 02:5
Chlorobenzene	U	0.21	1.0	μg/L	1	4/12/2019 02:5
Chloroethane	U	0.68	1.0	μg/L	1	4/12/2019 02:5
Chloroform	U	0.46	1.0	μg/L	1	4/12/2019 02:5
Chloromethane	U	0.68	1.0	μg/L	1	4/12/2019 02:
cis-1,2-Dichloroethene	U	0.38	1.0	μg/L	1	4/12/2019 02:
cis-1,3-Dichloropropene	U	0.13	1.0	μg/L	1	4/12/2019 02:
Dibromochloromethane	U	0.20	1.0	μg/L	1	4/12/2019 02:
Dibromomethane	U	0.16	1.0	μg/L	1	4/12/2019 02:
Dichlorodifluoromethane	U	0.30	1.0	μg/L	1	4/12/2019 02:
Ethylbenzene	U	0.29	1.0	μg/L	1	4/12/2019 02:
Hexachlorobutadiene	U	0.15	1.0	μg/L	1	4/12/2019 02:
Hexachloroethane	U	0.15	1.0	μg/L	1	4/12/2019 02:
Hexane	U	0.18	1.0	μg/L	1	4/12/2019 02:
odomethane	U	0.44	1.0	μg/L	1	4/12/2019 02:
sopropylbenzene	U	0.17	1.0	μg/L	1	4/12/2019 02:
m,p-Xylene	U	0.53	2.0	μg/L	1	4/12/2019 02:
Methyl tert-butyl ether	U	0.21	1.0	μg/L	1	4/12/2019 02:
Methylene chloride	U	0.16	5.0	μg/L	1	4/12/2019 02:
Naphthalene	U	0.14	5.0	μg/L	1	4/12/2019 02:
n-Butylbenzene	U	0.090	1.0	μg/L	1	4/12/2019 02:
n-Propylbenzene	U	0.16	1.0	μg/L	1	4/12/2019 02:
o-Xylene	U	0.19	1.0	μg/L	1	4/12/2019 02:
p-Isopropyltoluene	U	0.10	1.0	µg/L	1	4/12/2019 02:
sec-Butylbenzene	U	0.11	1.0	μg/L	1	4/12/2019 02:
Styrene	U	0.19	1.0	μg/L	1	4/12/2019 02:
tert-Butyl alcohol	U	2.2	20	μg/L	1	4/12/2019 02:
tert-Butylbenzene	U	0.10	1.0	μg/L	1	4/12/2019 02:
Tetrachloroethene	U	0.28	1.0	μg/L	1	4/12/2019 02:
Tetrahydrofuran	U	0.49	1.0	μg/L	1	4/12/2019 02:
Toluene	U	0.32	1.0	μg/L	1	4/12/2019 02:
trans-1,2-Dichloroethene	U	0.48	1.0	μg/L	1	4/12/2019 02:
trans-1,3-Dichloropropene	U	0.15	1.0	μg/L	1	4/12/2019 02:
trans-1,4-Dichloro-2-butene	U	0.58	2.0	μg/L	1	4/12/2019 02:
Trichloroethene	U	0.33	1.0	μg/L	1	4/12/2019 02:
Trichlorofluoromethane	U	0.24	1.0	μg/L	1	4/12/2019 02:

Note:

Client:

BB&E, Inc.

Project:

SSW Collis 2019 LTM Task 1

Sample ID:

COL-GW-06

Collection Date: 4/8/2019 01:55 PM

Date: 18-Apr-19

Work Order: 1904634

Lab ID: 1904634-06

Matrix: GROUNDWATER

Analyses	Result Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
Vinyl acetate	U	0.42	5.0	μg/L	1	4/12/2019 02:58
Vinyl chloride	U	0.53	1.0	μg/L	1	4/12/2019 02:58
Surr: 1,2-Dichloroethane-d4	98. <i>4</i>		75-120	%REC	1	4/12/2019 02:58
Surr: 4-Bromofluorobenzene	97.4		80-110	%REC	1	4/12/2019 02:58
Surr: Dibromofluoromethane	95.6		85-115	%REC	1	4/12/2019 02:58
Surr: Toluene-d8	99.6		85-110	%REC	1	4/12/2019 02:58

Client:

BB&E, Inc.

Project:

SSW Collis 2019 LTM Task 1

Sample ID:

COL-GW-07

Collection Date: 4/8/2019 01:55 PM

Date: 18-Apr-19

Work Order: 1904634

Lab ID: 1904634-07

Matrix: GROUNDWATER

Analyses	Result	Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
VOLATILE ORGANIC COMPOUNDS		Met	hod: SW8260C	;			Analyst: PM
1,1,1,2-Tetrachloroethane	U		0.28	1.0	μg/L	1	4/12/2019 03:14
1,1,1-Trichloroethane	U		0.33	1.0	μg/L	1	4/12/2019 03:14
1,1,2,2-Tetrachloroethane	U		0.17	1.0	µg/L	1	4/12/2019 03:14
1,1,2-Trichloroethane	U		0.22	1.0	μg/L	1	4/12/2019 03:14
1,1,2-Trichlorotrifluoroethane	U		0.18	1.0	μg/L	1	4/12/2019 03:14
1,1-Dichloroethane	U		0.48	1.0	μg/L	1	4/12/2019 03:14
1,1-Dichloroethene	U		0.36	1.0	μg/L	1	4/12/2019 03:14
1,1-Dichloropropene	U		0.28	1.0	μg/L	1	4/12/2019 03:14
1,2,3-Trichlorobenzene	U		0.29	1.0	μg/L	1	4/12/2019 03:14
1,2,3-Trichloropropane	U		0.29	1.0	μg/L	1	4/12/2019 03:14
1,2,4-Trichlorobenzene	U		0.25	1.0	μg/L	1	4/12/2019 03:14
1,2,4-Trimethylbenzene	U		0.11	1.0	μg/L	1	4/12/2019 03:14
1,2-Dibromo-3-chloropropane	U		0.43	1.0	μg/L	1	4/12/2019 03:14
1,2-Dibromoethane	U		0.17	1.0	μg/L	1	4/12/2019 03:14
1,2-Dichlorobenzene	U		0.12	1.0	μg/L	1	4/12/2019 03:14
1,2-Dichloroethane	U		0.11	1.0	μg/L	1	4/12/2019 03:14
1,2-Dichloropropane	U		0.34	1.0	μg/L	1	4/12/2019 03:14
1,3,5-Trichlorobenzene	U		0.25	1.0	μg/L	1	4/12/2019 03:14
1,3,5-Trimethylbenzene	U		0.15	1.0	μg/L	1	4/12/2019 03:14
1,3-Dichlorobenzene	U		0.13	1.0	μg/L	1	4/12/2019 03:14
1,3-Dichloropropane	U		0.14	1.0	μg/L	1	4/12/2019 03:14
1,4-Dichlorobenzene	U		0.13	1.0	μg/L	1	4/12/2019 03:14
2,2-Dichloropropane	U		0.31	1.0	μg/L	1	4/12/2019 03:14
2-Butanone	U		0.47	5.0	μg/L	1	4/12/2019 03:14
2-Chloroethyl vinyl ether	U		0.14	1.0	μg/L	1	4/12/2019 03:14
2-Chlorotoluene	U		0.14	1.0	μg/L	1	4/12/2019 03:14
2-Hexanone	U		0.50	5.0	μg/L	1	4/12/2019 03:14
2-Methylnaphthalene	0.37	J	0.28	5.0	μg/L	1	4/12/2019 03:14
4-Chlorotoluene	U		0.18	1.0	μg/L	1	4/12/2019 03:14
4-Isopropyltoluene	U		0.10	1.0	μg/L	1	4/12/2019 03:14
4-Methyl-2-pentanone	U		0.52	1.0	μg/L	1	4/12/2019 03:14
Acetone	2.8	J	0.47	10	μg/L	1	4/12/2019 03:14
Acrolein	U		0.38	1.0	μg/L	1	4/12/2019 03:14
Acrylonitrile	U		0.34	1.0	μg/L	1	4/12/2019 03:14
Benzene	U		0.42	1.0	μg/L	1	4/12/2019 03:14
Benzyl chloride	U		0.20	1.0	μg/L	1	4/12/2019 03:14
Bromobenzene	U		0.13	1.0	µg/L	1	4/12/2019 03:14
Bromochloromethane	U		0.15	1.0	µg/L	1	4/12/2019 03:14

Client:

BB&E, Inc.

Project:

SSW Collis 2019 LTM Task 1

Sample ID:

COL-GW-07

Collection Date: 4/8/2019 01:55 PM

Date: 18-Apr-19

Work Order: 1904634

Lab ID: 1904634-07

Matrix: GROUNDWATER

Analyses	Result Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
Bromodichloromethane	U	0.22	1.0	μg/L	1	4/12/2019 03:14
Bromoform	U	0.56	1.0	μg/L	1	4/12/2019 03:1
Bromomethane	U	0.29	1.0	μg/L	1	4/12/2019 03:1
Carbon disulfide	U	0.39	1.0	μg/L	1	4/12/2019 03:1
Carbon tetrachloride	U	0.32	1.0	μg/L	1	4/12/2019 03:1
Chlorobenzene	U	0.21	1.0	μg/L	1	4/12/2019 03:1
Chloroethane	U	0.68	1.0	μg/L	1	4/12/2019 03:1
Chloroform	U	0.46	1.0	μg/L	1	4/12/2019 03:1
Chloromethane	U	0.68	1.0	μg/L	1	4/12/2019 03:1
cis-1,2-Dichloroethene	U	0.38	1.0	μg/L	1	4/12/2019 03:1
cis-1,3-Dichloropropene	U	0.13	1.0	μg/L	1	4/12/2019 03:1
Dibromochloromethane	U	0.20	1.0	μg/L	1	4/12/2019 03:1
Dibromomethane	U	0.16	1.0	μg/L	1	4/12/2019 03:1
Dichlorodifluoromethane	U	0.30	1.0	μg/L	1	4/12/2019 03:1
Ethylbenzene	U	0.29	1.0	μg/L	1	4/12/2019 03:1
Hexachlorobutadiene	U	0.15	1.0	μg/L	1	4/12/2019 03:1
Hexachloroethane	U	0.15	1.0	μg/L	1	4/12/2019 03:1
Hexane	U	0.18	1.0	μg/L	1	4/12/2019 03:1
lodomethane	U	0.44	1.0	μg/L	1	4/12/2019 03:1
Isopropylbenzene	U	0.17	1.0	μg/L	1	4/12/2019 03:1
m,p-Xylene	U	0.53	2.0	μg/L	1	4/12/2019 03:1
Methyl tert-butyl ether	U	0.21	1.0	μg/L	1	4/12/2019 03:1
Methylene chloride	U	0.16	5.0	μg/L	1	4/12/2019 03:1
Naphthalene	U	0.14	5.0	μg/L	1	4/12/2019 03:14
n-Butylbenzene	U	0.090	1.0	μg/L	1	4/12/2019 03:14
n-Propylbenzene	U	0.16	1.0	μg/L	1	4/12/2019 03:14
o-Xylene	U	0.19	1.0	μg/L	1	4/12/2019 03:14
p-Isopropyltoluene	U	0.10	1.0	μg/L	1	4/12/2019 03:14
sec-Butylbenzene	U	0.11	1.0	μg/L	1	4/12/2019 03:14
Styrene	U	0.19	1.0	μg/L	1	4/12/2019 03:14
tert-Butyl alcohol	U	2.2	20	μg/L	1	4/12/2019 03:14
tert-Butylbenzene	U	0.10	1.0	μg/L	1	4/12/2019 03:14
Tetrachloroethene	U	0.28	1.0	μg/L	1	4/12/2019 03:14
Tetrahydrofuran	U	0.49	1.0	μg/L	1	4/12/2019 03:14
Toluene	U	0.32	1.0	μg/L	1	4/12/2019 03:14
trans-1,2-Dichloroethene	U	0.48	1.0	μg/L	1	4/12/2019 03:14
trans-1,3-Dichloropropene	U	0.15	1.0	µg/L	1	4/12/2019 03:14
trans-1,4-Dichloro-2-butene	U	0.58	2.0	µg/L	1	4/12/2019 03:14
Trichloroethene	U	0.33	1.0	µg/L	1	4/12/2019 03:14
Trichlorofluoromethane	U	0.24	1.0	μg/L	1	4/12/2019 03:14

Client:

BB&E, Inc.

Project:

Note:

SSW Collis 2019 LTM Task 1

Sample ID:

COL-GW-07

Collection Date: 4/8/2019 01:55 PM

Date: 18-Apr-19

Work Order: 1904634

Lab ID: 1904634-07

Matrix: GROUNDWATER

Analyses	Result Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
Vinyl acetate	U	0.42	5.0	μg/L	1	4/12/2019 03:14
Vinyl chloride	U	0.53	1.0	μg/L	1	4/12/2019 03:14
Surr: 1,2-Dichloroethane-d4	101		75-120	%REC	1	4/12/2019 03:14
Surr: 4-Bromofluorobenzene	99.4		80-110	%REC	1	4/12/2019 03:14
Surr: Dibromofluoromethane	95.8		85-115	%REC	1	4/12/2019 03:14
Surr: Toluene-d8	99.0		85-110	%REC	1	4/12/2019 03:14

Client:

BB&E, Inc.

Project:

SSW Collis 2019 LTM Task 1

Sample ID:

COL-GW-08

Collection Date: 4/8/2019 02:55 PM

Date: 18-Apr-19

Work Order: 1904634

Lab ID: 1904634-08

Matrix: GROUNDWATER

Analyses	Result	Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
VOLATILE ORGANIC COMPOUNDS		Meth	nod: SW8260 0	;			Analyst: PM
1,1,1,2-Tetrachloroethane	U		0.28	1.0	μg/L	1	4/12/2019 03:31
1,1,1-Trichloroethane	U		0.33	1.0	μg/L	1	4/12/2019 03:31
1,1,2,2-Tetrachloroethane	U		0.17	1.0	µg/L	1	4/12/2019 03:31
1,1,2-Trichloroethane	U		0.22	1.0	µg/L	1	4/12/2019 03:31
1,1,2-Trichlorotrifluoroethane	U		0.18	1.0	μg/L	1	4/12/2019 03:31
1,1-Dichloroethane	U		0.48	1.0	μg/L	1	4/12/2019 03:31
1,1-Dichloroethene	U		0.36	1.0	μg/L	1	4/12/2019 03:31
1,1-Dichloropropene	U		0.28	1.0	μg/L	1	4/12/2019 03:31
1,2,3-Trichlorobenzene	U		0.29	1.0	μg/L	1	4/12/2019 03:31
1,2,3-Trichloropropane	U		0.29	1.0	μg/L	1	4/12/2019 03:31
1,2,4-Trichlorobenzene	U		0.25	1.0	μg/L	1	4/12/2019 03:31
1,2,4-Trimethylbenzene	U		0.11	1.0	μg/L	1	4/12/2019 03:31
1,2-Dibromo-3-chloropropane	U		0.43	1.0	μg/L	1	4/12/2019 03:31
1,2-Dibromoethane	U		0.17	1.0	μg/L	1	4/12/2019 03:31
1,2-Dichlorobenzene	U		0.12	1.0	μg/L	1	4/12/2019 03:31
1,2-Dichloroethane	U		0.11	1.0	μg/L	1	4/12/2019 03:31
1,2-Dichloropropane	U		0.34	1.0	μg/L	1	4/12/2019 03:31
1,3,5-Trichlorobenzene	U		0.25	1.0	μg/L	1	4/12/2019 03:31
1,3,5-Trimethylbenzene	U		0.15	1.0	µg/L	1	4/12/2019 03:31
1,3-Dichlorobenzene	U		0.13	1.0	μg/L	1	4/12/2019 03:31
1,3-Dichloropropane	U		0.14	1.0	µg/L	1	4/12/2019 03:31
1,4-Dichlorobenzene	U		0.13	1.0	µg/L	1	4/12/2019 03:31
2,2-Dichloropropane	U		0.31	1.0	μg/L	1	4/12/2019 03:31
2-Butanone	U		0.47	5.0	μg/L	1	4/12/2019 03:31
2-Chloroethyl vinyl ether	U		0.14	1.0	μg/L	1	4/12/2019 03:31
2-Chlorotoluene	U		0.14	1.0	μg/L	1	4/12/2019 03:31
2-Hexanone	U		0.50	5.0	μg/L	1	4/12/2019 03:31
2-Methylnaphthalene	U		0.28	5.0	μg/L	1	4/12/2019 03:31
4-Chlorotoluene	U		0.18	1.0	μg/L	1	4/12/2019 03:31
4-Isopropyltoluene	U		0.10	1.0	μg/L	1	4/12/2019 03:31
4-Methyl-2-pentanone	U		0.52	1.0	μg/L	1	4/12/2019 03:31
Acetone	1.5	J	0.47	10	μg/L	1	4/12/2019 03:31
Acrolein	U		0.38	1.0	μg/L	1	4/12/2019 03:31
Acrylonitrile	U		0.34	1.0	µg/L	1	4/12/2019 03:31
Benzene	U		0.42	1.0	μg/L	1	4/12/2019 03:31
Benzyl chloride	U		0.20	1.0	μg/L	1	4/12/2019 03:31
Bromobenzene	U		0.13	1.0	µg/L	1	4/12/2019 03:31
Bromochloromethane	U		0.15	1.0	μg/L	1	4/12/2019 03:31

Client:

BB&E, Inc.

Project:

SSW Collis 2019 LTM Task 1

Sample ID:

COL-GW-08

Collection Date: 4/8/2019 02:55 PM

Date: 18-Apr-19

Work Order: 1904634

Lab ID: 1904634-08

Matrix: GROUNDWATER

Analyses	Result Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
Bromodichloromethane	U	0.22	1.0	μg/L	1	4/12/2019 03:31
Bromoform	U	0.56	1.0	μg/L	1	4/12/2019 03:31
Bromomethane	U	0.29	1.0	μg/L	1	4/12/2019 03:31
Carbon disulfide	U	0.39	1.0	μg/L	1	4/12/2019 03:31
Carbon tetrachloride	U	0.32	1.0	μg/L	1	4/12/2019 03:31
Chlorobenzene	U	0.21	1.0	μg/L	1	4/12/2019 03:31
Chloroethane	U	0.68	1.0	μg/L	1	4/12/2019 03:31
Chloroform	U	0.46	1.0	μg/L	1	4/12/2019 03:31
Chloromethane	U	0.68	1.0	μg/L	1	4/12/2019 03:31
cis-1,2-Dichloroethene	2.3	0.38	1.0	μg/L	1	4/12/2019 03:31
cis-1,3-Dichloropropene	U	0.13	1.0	μg/L	1	4/12/2019 03:31
Dibromochloromethane	U	0.20	1.0	μg/L	1	4/12/2019 03:31
Dibromomethane	U	0.16	1.0	μg/L	1	4/12/2019 03:31
Dichlorodifluoromethane	U	0.30	1.0	μg/L	1	4/12/2019 03:31
Ethylbenzene	U	0.29	1.0	μg/L	1	4/12/2019 03:31
Hexachlorobutadiene	U	0.15	1.0	μg/L	1	4/12/2019 03:31
Hexachloroethane	U	0.15	1.0	μg/L	1	4/12/2019 03:31
Hexane	U	0.18	1.0	μg/L	1	4/12/2019 03:31
lodomethane	U	0.44	1.0	µg/L	1	4/12/2019 03:31
Isopropylbenzene	U	0.17	1.0	μg/L	1	4/12/2019 03:31
m,p-Xylene	U	0.53	2.0	μg/L	1	4/12/2019 03:31
Methyl tert-butyl ether	U	0.21	1.0	μg/L	1	4/12/2019 03:31
Methylene chloride	U	0.16	5.0	µg/L	1	4/12/2019 03:31
Naphthalene	U	0.14	5.0	μg/L	1	4/12/2019 03:31
n-Butylbenzene	U	0.090	1.0	µg/L	1	4/12/2019 03:31
n-Propylbenzene	U	0.16	1.0	μg/L	1	4/12/2019 03:31
o-Xylene	U	0.19	1.0	μg/L	1	4/12/2019 03:31
p-Isopropyltoluene	U	0.10	1.0	μg/L	1	4/12/2019 03:31
sec-Butylbenzene	U	0.11	1.0	μg/L	1	4/12/2019 03:31
Styrene	U	0.19	1.0	μg/L	1	4/12/2019 03:31
tert-Butyl alcohol	U	2.2	20	μg/L	1	4/12/2019 03:31
tert-Butylbenzene	U	0.10	1.0	μg/L	1	4/12/2019 03:31
Tetrachloroethene	U	0.28	1.0	μg/L	1	4/12/2019 03:31
Tetrahydrofuran	U	0.49	1.0	μg/L	1	4/12/2019 03:31
Toluene	U	0.32	1.0	μg/L	1	4/12/2019 03:31
trans-1,2-Dichloroethene	U	0.48	1.0	μg/L	1	4/12/2019 03:31
trans-1,3-Dichloropropene	U	0.15	1.0	μg/L	1	4/12/2019 03:31
trans-1,4-Dichloro-2-butene	U	0.58	2.0	μg/L	1	4/12/2019 03:31
Trichloroethene	U	0.33	1.0	μg/L	1	4/12/2019 03:31
Trichlorofluoromethane	Ü	0.24	1.0	μg/L	1	4/12/2019 03:31

Note:

Client:

BB&E, Inc.

Project:

SSW Collis 2019 LTM Task 1

Sample ID:

COL-GW-08

Collection Date: 4/8/2019 02:55 PM

Date: 18-Apr-19

Work Order: 1904634

Lab ID: 1904634-08

Matrix: GROUNDWATER

Analyses	Result Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
Vinyl acetate	U	0.42	5.0	μg/L	1	4/12/2019 03:31
Vinyl chloride	U	0.53	1.0	µg/L	1	4/12/2019 03:31
Surr: 1,2-Dichloroethane-d4	98.8		75-120	%REC	1	4/12/2019 03:31
Surr: 4-Bromofluorobenzene	100		80-110	%REC	1	4/12/2019 03:31
Surr: Dibromofluoromethane	98. <i>4</i>		85-115	%REC	1	4/12/2019 03:31
Surr: Toluene-d8	98.6		85-110	%REC	1	4/12/2019 03:31

Client:

BB&E, Inc.

Project:

SSW Collis 2019 LTM Task 1

Sample ID:

COL-GW-09

Collection Date: 4/8/2019 03:40 PM

Date: 18-Apr-19

Work Order: 1904634

Lab ID: 1904634-09

Matrix: GROUNDWATER

Analyses	Result	Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
VOLATILE ORGANIC COMPOUNDS		Meth	nod: SW8260C				Analyst: PM
1,1,1,2-Tetrachloroethane	U		0.28	1.0	μg/L	1	4/12/2019 03:48
1,1,1-Trichloroethane	U		0.33	1.0	μg/L	1	4/12/2019 03:48
1,1,2,2-Tetrachloroethane	U		0.17	1.0	μg/L	1	4/12/2019 03:48
1,1,2-Trichloroethane	U		0.22	1.0	μg/L	1	4/12/2019 03:48
1,1,2-Trichlorotrifluoroethane	U		0.18	1.0	μg/L	1	4/12/2019 03:48
1,1-Dichloroethane	U		0.48	1.0	μg/L	1	4/12/2019 03:48
1,1-Dichloroethene	U		0.36	1.0	μg/L	1	4/12/2019 03:48
1,1-Dichloropropene	U		0.28	1.0	μg/L	1	4/12/2019 03:48
1,2,3-Trichlorobenzene	U		0.29	1.0	μg/L	1	4/12/2019 03:48
1,2,3-Trichloropropane	U		0.29	1.0	μg/L	1	4/12/2019 03:48
1,2,4-Trichlorobenzene	U		0.25	1.0	μg/L	1	4/12/2019 03:48
1,2,4-Trimethylbenzene	U		0.11	1.0	μg/L	1	4/12/2019 03:48
1,2-Dibromo-3-chloropropane	U		0.43	1.0	μg/L	1	4/12/2019 03:48
1,2-Dibromoethane	U		0.17	1.0	μg/L	1	4/12/2019 03:48
1,2-Dichlorobenzene	U		0.12	1.0	μg/L	1	4/12/2019 03:48
1,2-Dichloroethane	U		0.11	1.0	μg/L	1	4/12/2019 03:48
1,2-Dichloropropane	U		0.34	1.0	μg/L	1	4/12/2019 03:48
1,3,5-Trichlorobenzene	U		0.25	1.0	μg/L	1	4/12/2019 03:48
1,3,5-Trimethylbenzene	U		0.15	1.0	μg/L	1	4/12/2019 03:48
1,3-Dichlorobenzene	U		0.13	1.0	μg/L	1	4/12/2019 03:48
1,3-Dichloropropane	U		0.14	1.0	μg/L	1	4/12/2019 03:48
1,4-Dichlorobenzene	U		0.13	1.0	μg/L	1	4/12/2019 03:48
2,2-Dichloropropane	U		0.31	1.0	μg/L	1	4/12/2019 03:48
2-Butanone	U		0.47	5.0	μg/L	1	4/12/2019 03:48
2-Chloroethyl vinyl ether	U		0.14	1.0	μg/L	1	4/12/2019 03:48
2-Chlorotoluene	U		0.14	1.0	μg/L	1	4/12/2019 03:48
2-Hexanone	U		0.50	5.0	μg/L	1	4/12/2019 03:48
2-Methylnaphthalene	U		0.28	5.0	μg/L	1	4/12/2019 03:48
4-Chlorotoluene	U		0.18	1.0	μg/L	1	4/12/2019 03:48
4-Isopropyltoluene	U		0.10	1.0	μg/L	1	4/12/2019 03:48
4-Methyl-2-pentanone	U		0.52	1.0	μg/L	1	4/12/2019 03:48
Acetone	5.1	J	0.47	10	μg/L	1	4/12/2019 03:48
Acrolein	U		0.38	1.0	μg/L	1	4/12/2019 03:48
Acrylonitrile	U		0.34	1.0	μg/L	1	4/12/2019 03:48
Benzene	U		0.42	1.0	μg/L	1	4/12/2019 03:48
Benzyl chloride	U		0.20	1.0	μg/L	1	4/12/2019 03:48
Bromobenzene	U		0.13	1.0	μg/L	1	4/12/2019 03:48
Bromochloromethane	U		0.15	1.0	μg/L	1	4/12/2019 03:48

Note:

Client:

BB&E, Inc.

Project:

SSW Collis 2019 LTM Task 1

Sample ID:

COL-GW-09

Collection Date: 4/8/2019 03:40 PM

Date: 18-Apr-19

Work Order: 1904634

Lab ID: 1904634-09

Matrix: GROUNDWATER

Analyses	Result Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
Bromodichloromethane	U	0.22	1.0	μg/L	1	4/12/2019 03:48
Bromoform	U	0.56	1.0	μg/L	1	4/12/2019 03:48
Bromomethane	U	0.29	1.0	μg/L	1	4/12/2019 03:48
Carbon disulfide	U	0.39	1.0	μg/L	1	4/12/2019 03:48
Carbon tetrachloride	U	0.32	1.0	μg/L	1	4/12/2019 03:48
Chlorobenzene	U	0.21	1.0	μg/L	1	4/12/2019 03:48
Chloroethane	U	0.68	1.0	μg/L	1	4/12/2019 03:48
Chloroform	U	0.46	1.0	μg/L	1	4/12/2019 03:48
Chloromethane	U	0.68	1.0	μg/L	1	4/12/2019 03:48
cis-1,2-Dichloroethene	100	0.76	2.0	μg/L	2	4/13/2019 12:42
cis-1,3-Dichloropropene	U	0.13	1.0	μg/L	1	4/12/2019 03:48
Dibromochloromethane	U	0.20	1.0	μg/L	1	4/12/2019 03:48
Dibromomethane	U	0.16	1.0	μg/L	1	4/12/2019 03:48
Dichlorodifluoromethane	U	0.30	1.0	μg/L	1	4/12/2019 03:48
Ethylbenzene	U	0.29	1.0	μg/L	1	4/12/2019 03:48
Hexachlorobutadiene	U	0.15	1.0	µg/L	1	4/12/2019 03:48
Hexachloroethane	U	0.15	1.0	μg/L	1	4/12/2019 03:48
Hexane	U	0.18	1.0	μg/L	1	4/12/2019 03:48
lodomethane	U	0.44	1.0	μg/L	1	4/12/2019 03:48
Isopropylbenzene	U	0.17	1.0	μg/L	1	4/12/2019 03:48
m,p-Xylene	U	0.53	2.0	μg/L	1	4/12/2019 03:48
Methyl tert-butyl ether	U	0.21	1.0	μg/L	1	4/12/2019 03:48
Methylene chloride	U	0.16	5.0	μg/L	1	4/12/2019 03:48
Naphthalene	U	0.14	5.0	μg/L	1	4/12/2019 03:48
n-Butylbenzene	U	0.090	1.0	μg/L	1	4/12/2019 03:48
n-Propylbenzene	U	0.16	1.0	μg/L	1	4/12/2019 03:48
o-Xylene	U	0.19	1.0	μg/L	1	4/12/2019 03:48
p-Isopropyltoluene	U	0.10	1.0	μg/L	1	4/12/2019 03:48
sec-Butylbenzene	U	0.11	1.0	μg/L	1	4/12/2019 03:48
Styrene	U	0.19	1.0	μg/L	1	4/12/2019 03:48
tert-Butyl alcohol	3.8 J	2.2	20	μg/L	1	4/12/2019 03:48
tert-Butylbenzene	U	0.10	1.0	μg/L	1	4/12/2019 03:48
Tetrachloroethene	Ü	0.28	1.0	μg/L	1	4/12/2019 03:48
Tetrahydrofuran	Ü	0.49	1.0	μg/L	1	
Toluene	U	0.49	1.0		1	4/12/2019 03:48 4/12/2019 03:48
trans-1,2-Dichloroethene	3.2	0.32		μg/L	-	
trans-1,3-Dichloropropene	3.2 U	0.48	1.0 1.0	μg/L	1	4/12/2019 03:48
trans-1,4-Dichloro-2-butene	U	0.15	2.0	μg/L	1	4/12/2019 03:48
Trichloroethene	U	0.38		μg/L	1	4/12/2019 03:48
Trichlorofluoromethane	U	0.33	1.0 1.0	μg/L μg/L	1	4/12/2019 03:48 4/12/2019 03:48

Client:

BB&E, Inc.

Project:

SSW Collis 2019 LTM Task 1

Sample ID:

COL-GW-09

Collection Date: 4/8/2019 03:40 PM

Date: 18-Apr-19

Work Order: 1904634

Lab ID: 1904634-09

Matrix: GROUNDWATER

Analyses	Result Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
Vinyl acetate	U	0.42	5.0	μg/L	1	4/12/2019 03:48
Vinyl chloride	55	0.53	1.0	μg/L	1	4/12/2019 03:48
Surr: 1,2-Dichloroethane-d4	99.4		75-120	%REC	1	4/12/2019 03:48
Surr: 1,2-Dichloroethane-d4	84.6		75-120	%REC	2	4/13/2019 12:42
Surr: 4-Bromofluorobenzene	101		80-110	%REC	1	4/12/2019 03:48
Surr: 4-Bromofluorobenzene	99.1		80-110	%REC	2	4/13/2019 12:42
Surr: Dibromofluoromethane	98.0		85-115	%REC	1	4/12/2019 03:48
Surr: Dibromofluoromethane	94.9		85-115	%REC	2	4/13/2019 12:42
Surr: Toluene-d8	101		85-110	%REC	1	4/12/2019 03:48
Surr: Toluene-d8	95.2		85-110	%REC	2	4/13/2019 12:42

Client:

BB&E, Inc.

Project:

SSW Collis 2019 LTM Task 1

Sample ID:

COL-GW-10

Collection Date: 4/9/2019 08:30 AM

Date: 18-Apr-19

Work Order: 1904634

Lab ID: 1904634-10

Matrix: GROUNDWATER

Analyses	Result	Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
VOLATILE ORGANIC COMPOUNDS		Meth	nod: SW8260 0				Analyst: PM
1,1,1,2-Tetrachloroethane	U		0.28	1.0	μg/L	1	4/12/2019 04:04
1,1,1-Trichloroethane	U		0.33	1.0	μg/L	1	4/12/2019 04:04
1,1,2,2-Tetrachloroethane	U		0.17	1.0	μg/L	1	4/12/2019 04:04
1,1,2-Trichloroethane	U		0.22	1.0	μg/L	1	4/12/2019 04:04
1,1,2-Trichlorotrifluoroethane	U		0.18	1.0	μg/L	1	4/12/2019 04:04
1,1-Dichloroethane	U		0.48	1.0	μg/L	1	4/12/2019 04:04
1,1-Dichloroethene	U		0.36	1.0	μg/L	1	4/12/2019 04:04
1,1-Dichloropropene	U		0.28	1.0	μg/L	1	4/12/2019 04:04
1,2,3-Trichlorobenzene	U		0.29	1.0	μg/L	1	4/12/2019 04:04
1,2,3-Trichloropropane	U		0.29	1.0	μg/L	1	4/12/2019 04:04
1,2,4-Trichlorobenzene	U		0.25	1.0	μg/L	1	4/12/2019 04:04
1,2,4-Trimethylbenzene	U		0.11	1.0	μg/L	1	4/12/2019 04:04
1,2-Dibromo-3-chloropropane	U		0.43	1.0	μg/L	1	4/12/2019 04:04
1,2-Dibromoethane	U		0.17	1.0	μg/L	1	4/12/2019 04:04
1,2-Dichlorobenzene	U		0.12	1.0	μg/L	1	4/12/2019 04:04
1,2-Dichloroethane	U		0.11	1.0	μg/L	1	4/12/2019 04:04
1,2-Dichloropropane	U		0.34	1.0	μg/L	1	4/12/2019 04:04
1,3,5-Trichlorobenzene	U		0.25	1.0	μg/L	1	4/12/2019 04:04
1,3,5-Trimethylbenzene	U		0.15	1.0	μg/L	1	4/12/2019 04:04
1,3-Dichlorobenzene	U		0.13	1.0	μg/L	1	4/12/2019 04:04
1,3-Dichloropropane	U		0.14	1.0	μg/L	1	4/12/2019 04:04
1,4-Dichlorobenzene	U		0.13	1.0	μg/L	1	4/12/2019 04:04
2,2-Dichloropropane	U		0.31	1.0	μg/L	1	4/12/2019 04:04
2-Butanone	U		0.47	5.0	μg/L	1	4/12/2019 04:04
2-Chloroethyl vinyl ether	U		0.14	1.0	μg/L	1	4/12/2019 04:04
2-Chlorotoluene	U		0.14	1.0	μg/L	1	4/12/2019 04:04
2-Hexanone	U		0.50	5.0	μg/L	1	4/12/2019 04:04
2-Methylnaphthalene	U		0.28	5.0	μg/L	1	4/12/2019 04:04
4-Chlorotoluene	U		0.18	1.0	μg/L	1	4/12/2019 04:04
4-Isopropyltoluene	U		0.10	1.0	μg/L	1	4/12/2019 04:04
4-Methyl-2-pentanone	U		0.52	1.0	μg/L	1	4/12/2019 04:04
Acetone	1.9	J	0.47	10	μg/L	1	4/12/2019 04:04
Acrolein	U		0.38	1.0	μg/L	1	4/12/2019 04:04
Acrylonitrile	U		0.34	1.0	μg/L	1	4/12/2019 04:04
Benzene	U		0.42	1.0	µg/L	1	4/12/2019 04:04
Benzyl chloride	U		0.20	1.0	µg/L	1	4/12/2019 04:04
Bromobenzene	U		0.13	1.0	µg/L	1	4/12/2019 04:04
Bromochloromethane	U		0.15	1.0	μg/L	1	4/12/2019 04:04

Note:

Date: 18-Apr-19

Client:

BB&E, Inc.

Project:

SSW Collis 2019 LTM Task 1

Sample ID:

COL-GW-10

Collection Date: 4/9/2019 08:30 AM

Work Order: 1904634

Lab ID: 1904634-10

Matrix: GROUNDWATER

Analyses	Result	Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
Bromodichloromethane	U		0.22	1.0	μg/L	1	4/12/2019 04:04
Bromoform	U		0.56	1.0	μg/L	1	4/12/2019 04:04
Bromomethane	U		0.29	1.0	μg/L	1	4/12/2019 04:04
Carbon disulfide	U		0.39	1.0	μg/L	1	4/12/2019 04:04
Carbon tetrachloride	U		0.32	1.0	μg/L	1	4/12/2019 04:04
Chlorobenzene	U		0.21	1.0	μg/L	1	4/12/2019 04:04
Chloroethane	U		0.68	1.0	μg/L	1	4/12/2019 04:04
Chloroform	U		0.46	1.0	μg/L	1	4/12/2019 04:04
Chloromethane	U		0.68	1.0	μg/L	1	4/12/2019 04:04
cis-1,2-Dichloroethene	31		0.38	1.0	μg/L	1	4/12/2019 04:04
cis-1,3-Dichloropropene	U		0.13	1.0	μg/L	1	4/12/2019 04:04
Dibromochloromethane	U		0.20	1.0	μg/L	1	4/12/2019 04:04
Dibromomethane	U		0.16	1.0	μg/L	1	4/12/2019 04:04
Dichlorodifluoromethane	U		0.30	1.0	μg/L	1	4/12/2019 04:04
Ethylbenzene	U		0.29	1.0	μg/L	1	4/12/2019 04:04
Hexachlorobutadiene	U		0.15	1.0	μg/L	1	4/12/2019 04:04
Hexachloroethane	U		0.15	1.0	μg/L	1	4/12/2019 04:04
Hexane	U		0.18	1.0	μg/L	1	4/12/2019 04:04
lodomethane	U		0.44	1.0	μg/L	1	4/12/2019 04:04
Isopropylbenzene	U		0.17	1.0	μg/L	1	4/12/2019 04:04
m,p-Xylene	U		0.53	2.0	μg/L	1	4/12/2019 04:04
Methyl tert-butyl ether	U		0.21	1.0	μg/L	1	4/12/2019 04:04
Methylene chloride	U		0.16	5.0	μg/L	1	4/12/2019 04:04
Naphthalene	U		0.14	5.0	μg/L	1	4/12/2019 04:04
n-Butylbenzene	U		0.090	1.0	μg/L	1	4/12/2019 04:04
n-Propylbenzene	U		0.16	1.0	μg/L	1	4/12/2019 04:04
o-Xylene	U		0.19	1.0	μg/L	1	4/12/2019 04:04
p-Isopropyltoluene	U		0.10	1.0	μg/L	1	4/12/2019 04:04
sec-Butylbenzene	U		0.11	1.0	μg/L	1	4/12/2019 04:04
Styrene	U		0.19	1.0	μg/L	1	4/12/2019 04:04
tert-Butyl alcohol	3.6	J	2.2	20	μg/L	1	4/12/2019 04:04
tert-Butylbenzene	U		0.10	1.0	μg/L	1	4/12/2019 04:04
Tetrachloroethene	U		0.28	1.0	μg/L	1	4/12/2019 04:04
Tetrahydrofuran	U		0.49	1.0	μg/L	1	4/12/2019 04:04
Toluene	U		0.32	1.0	μg/L	1	4/12/2019 04:04
trans-1,2-Dichloroethene	U		0.48	1.0	μg/L	1	4/12/2019 04:04
trans-1,3-Dichloropropene	U		0.15	1.0	μg/L	1	4/12/2019 04:04
trans-1,4-Dichloro-2-butene	U		0.58	2.0	μg/L	1	4/12/2019 04:04
Trichloroethene	U		0.33	1.0	μg/L	1	4/12/2019 04:04
Trichlorofluoromethane	U		0.24	1.0	μg/L	1	4/12/2019 04:04

Note:

Client:

BB&E, Inc.

Project:

SSW Collis 2019 LTM Task 1

Sample ID:

COL-GW-10

Collection Date: 4/9/2019 08:30 AM

Date: 18-Apr-19

Work Order: 1904634

Lab ID: 1904634-10

Matrix: GROUNDWATER

Analyses	Result Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
Vinyl acetate	U	0.42	5.0	μg/L	1	4/12/2019 04:04
Vinyl chloride	40	0.53	1.0	μg/L	1	4/12/2019 04:04
Surr: 1,2-Dichloroethane-d4	99.0		75-120	%REC	1	4/12/2019 04:04
Surr: 4-Bromofluorobenzene	101		80-110	%REC	1	4/12/2019 04:04
Surr: Dibromofluoromethane	97.4		85-115	%REC	1	4/12/2019 04:04
Surr: Toluene-d8	100		85-110	%REC	1	4/12/2019 04:04

Client:

BB&E, Inc.

Project:

SSW Collis 2019 LTM Task 1

Sample ID:

COL-GW-11

Collection Date: 4/9/2019 09:15 AM

Date: 18-Apr-19

Work Order: 1904634

Lab ID: 1904634-11

Matrix: GROUNDWATER

Analyses	Result Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
VOLATILE ORGANIC COMPOUNDS	Me	ethod: SW8260 0	:			Analyst: PM
1,1,1,2-Tetrachloroethane	U	0.28	1.0	μg/L	1	4/12/2019 04:21
1,1,1-Trichloroethane	U	0.33	1.0	μg/L	1	4/12/2019 04:21
1,1,2,2-Tetrachloroethane	U	0.17	1.0	μg/L	1	4/12/2019 04:21
1,1,2-Trichloroethane	U	0.22	1.0	μg/L	1	4/12/2019 04:21
1,1,2-Trichlorotrifluoroethane	U	0.18	1.0	μg/L	1	4/12/2019 04:21
1,1-Dichloroethane	U	0.48	1.0	μg/L	1	4/12/2019 04:21
1,1-Dichloroethene	U	0.36	1.0	μg/L	1	4/12/2019 04:21
1,1-Dichloropropene	U	0.28	1.0	μg/L	1	4/12/2019 04:21
1,2,3-Trichlorobenzene	U	0.29	1.0	μg/L	1	4/12/2019 04:21
1,2,3-Trichloropropane	U	0.29	1.0	μg/L	1	4/12/2019 04:21
1,2,4-Trichlorobenzene	U	0.25	1.0	μg/L	1	4/12/2019 04:21
1,2,4-Trimethylbenzene	U	0.11	1.0	μg/L	1	4/12/2019 04:21
1,2-Dibromo-3-chloropropane	U	0.43	1.0	μg/L	1	4/12/2019 04:21
1,2-Dibromoethane	U	0.17	1.0	μg/L	1	4/12/2019 04:21
1,2-Dichlorobenzene	U	0.12	1.0	μg/L	1	4/12/2019 04:21
1,2-Dichloroethane	U	0.11	1.0	μg/L	1	4/12/2019 04:21
1,2-Dichloropropane	U	0.34	1.0	μg/L	1	4/12/2019 04:2
1,3,5-Trichlorobenzene	U	0.25	1.0	μg/L	1	4/12/2019 04:21
1,3,5-Trimethylbenzene	U	0.15	1.0	μg/L	1	4/12/2019 04:21
1,3-Dichlorobenzene	U	0.13	1.0	μg/L	1	4/12/2019 04:21
1,3-Dichloropropane	U	0.14	1.0	μg/L	1	4/12/2019 04:21
1,4-Dichlorobenzene	U	0.13	1.0	μg/L	1	4/12/2019 04:21
2,2-Dichloropropane	U	0.31	1.0	μg/L	1	4/12/2019 04:21
2-Butanone	U	0.47	5.0	µg/L	1	4/12/2019 04:21
2-Chloroethyl vinyl ether	U	0.14	1.0	μg/L	1	4/12/2019 04:21
2-Chlorotoluene	U	0.14	1.0	μg/L	1	4/12/2019 04:21
2-Hexanone	U	0.50	5.0	μg/L	1	4/12/2019 04:21
2-Methylnaphthalene	U	0.28	5.0	μg/L	1	4/12/2019 04:21
4-Chlorotoluene	U	0.18	1.0	μg/L	1	4/12/2019 04:21
4-Isopropyltoluene	U	0.10	1.0	μg/L	1	4/12/2019 04:21
4-Methyl-2-pentanone	U	0.52	1.0	μg/L	1	4/12/2019 04:21
Acetone	U	0.47	10	μg/L	1	4/12/2019 04:21
Acrolein	U	0.38	1.0	μg/L	1	4/12/2019 04:2
Acrylonitrile	Ü	0.34	1.0	μg/L	1	4/12/2019 04:2
Benzene	U	0.42	1.0	μg/L	1	4/12/2019 04:2
Benzyl chloride	U	0.20	1.0	μg/L	1	4/12/2019 04:2
Bromobenzene	U	0.13	1.0	µg/L	1	4/12/2019 04:2
Bromochloromethane	U	0.15	1.0	μg/L	1	4/12/2019 04:2

Client:

BB&E, Inc.

Project:

SSW Collis 2019 LTM Task 1

Sample ID:

COL-GW-11

Collection Date: 4/9/2019 09:15 AM

Date: 18-Apr-19

Work Order: 1904634

Lab ID: 1904634-11

Matrix: GROUNDWATER

Analyses	Result Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
Bromodichloromethane	U	0.22	1.0	μg/L	1	4/12/2019 04:21
Bromoform	U	0.56	1.0	µg/L	1	4/12/2019 04:21
Bromomethane	U	0.29	1.0	μg/L	1	4/12/2019 04:21
Carbon disulfide	U	0.39	1.0	μg/L	1	4/12/2019 04:21
Carbon tetrachloride	U	0.32	1.0	μg/L	1	4/12/2019 04:21
Chlorobenzene	U	0.21	1.0	μg/L	1	4/12/2019 04:21
Chloroethane	U	0.68	1.0	μg/L	1	4/12/2019 04:21
Chloroform	U	0.46	1.0	μg/L	1	4/12/2019 04:21
Chloromethane	U	0.68	1.0	μg/L	1	4/12/2019 04:21
cis-1,2-Dichloroethene	7.7	0.38	1.0	µg/L	1	4/12/2019 04:21
cis-1,3-Dichloropropene	U	0.13	1.0	μg/L	1	4/12/2019 04:21
Dibromochloromethane	U	0.20	1.0	μg/L	1	4/12/2019 04:21
Dibromomethane	U	0.16	1.0	μg/L	1	4/12/2019 04:21
Dichlorodifluoromethane	U	0.30	1.0	μg/L	1	4/12/2019 04:21
Ethylbenzene	U	0.29	1.0	µg/L	1	4/12/2019 04:21
Hexachlorobutadiene	U	0.15	1.0	μg/L	1	4/12/2019 04:21
Hexachloroethane	U	0.15	1.0	μg/L	1	4/12/2019 04:21
Hexane	U	0.18	1.0	μg/L	1	4/12/2019 04:21
lodomethane	U	0.44	1.0	μg/L	1	4/12/2019 04:21
Isopropylbenzene	U	0.17	1.0	μg/L	1	4/12/2019 04:21
m,p-Xylene	U	0.53	2.0	μg/L	1	4/12/2019 04:21
Methyl tert-butyl ether	U	0.21	1.0	μg/L	1	4/12/2019 04:21
Methylene chloride	U	0.16	5.0	μg/L	1	4/12/2019 04:21
Naphthalene	U	0.14	5.0	μg/L	1	4/12/2019 04:21
n-Butylbenzene	U	0.090	1.0	μg/L	1	4/12/2019 04:21
n-Propylbenzene	U	0.16	1.0	μg/L	1	4/12/2019 04:21
o-Xylene	U	0.19	1.0	μg/L	1	4/12/2019 04:21
p-Isopropyltoluene	U	0.10	1.0	µg/L	1	4/12/2019 04:21
sec-Butylbenzene	U	0.11	1.0	µg/L	1	4/12/2019 04:21
Styrene	U	0.19	1.0	μg/L	1	4/12/2019 04:21
tert-Butyl alcohol	Ü	2.2	20	µg/L	1	4/12/2019 04:21
tert-Butylbenzene	U	0.10	1.0	μg/L	1	4/12/2019 04:21
Tetrachloroethene	U	0.28	1.0	μg/L	1	4/12/2019 04:21
Tetrahydrofuran	U	0.49	1.0	μg/L	1	4/12/2019 04:21
Toluene	Ü	0.43	1.0	μg/L	1	4/12/2019 04:21
trans-1,2-Dichloroethene	Ü	0.48	1.0	μg/L μg/L	1	4/12/2019 04:21
trans-1,3-Dichloropropene	U	0.45	1.0	μg/L	1	4/12/2019 04:21
trans-1,4-Dichloro-2-butene	U	0.13	2.0	μg/L	1	4/12/2019 04:21
Trichloroethene	U	0.33	1.0	μg/L μg/L	1	4/12/2019 04:21
Trichlorofluoromethane	Ü	0.24	1.0	μg/L μg/L	1	4/12/2019 04:21

Note:

Client:

BB&E, Inc.

Project:

SSW Collis 2019 LTM Task 1

Sample ID:

COL-GW-11

Collection Date: 4/9/2019 09:15 AM

Date: 18-Apr-19

Work Order: 1904634

Lab ID: 1904634-11

Matrix: GROUNDWATER

Analyses	Result Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
Vinyl acetate	U	0.42	5.0	μg/L	1	4/12/2019 04:21
Vinyl chloride	37	0.53	1.0	μg/L	1	4/12/2019 04:21
Surr: 1,2-Dichloroethane-d4	98.4		75-120	%REC	1	4/12/2019 04:21
Surr: 4-Bromofluorobenzene	99.3		80-110	%REC	1	4/12/2019 04:21
Surr: Dibromofluoromethane	96.6		85-115	%REC	1	4/12/2019 04:21
Surr: Toluene-d8	99.0		85-110	%REC	1	4/12/2019 04:21

Client:

BB&E, Inc.

Project:

SSW Collis 2019 LTM Task 1

Sample ID:

COL-GW-12

Collection Date: 4/9/2019 10:00 AM

Date: 18-Apr-19

Work Order: 1904634

Lab ID: 1904634-12

Matrix: GROUNDWATER

Analyses	Result	Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
GASES IN WATER		Meth	od: RSK-175				Analyst: KB
Ethane	U		0.21	5.0	μg/L	1	4/12/2019 15:06
Ethene	U		0.41	5.0	μg/L	1	4/12/2019 15:06
Methane	310		3.2	25	μg/L	5	4/12/2019 15:51
METALS BY ICP-MS (DISSOLVED)			od: SW6020A		Prep: FIL	TER / 4/16/19	Analyst: STP
Iron	0.10		0.015	0.080	mg/L	1	4/16/2019 16:16
Manganese	0.29		0.00026	0.0050	mg/L	1	4/16/2019 16:16
1,4-DIOXANE BY SELECT ION MONITORING	3	Meth	od: SW8260B				Analyst: PM
1,4-Dioxane	U		0.44	0.60	μg/L	1	4/10/2019 15:52
Surr: Toluene-d8	108			74-124	%REC	1	4/10/2019 15:52
VOLATILE ORGANIC COMPOUNDS		Meth	od: SW8260C				Analyst: PM
1,1,1,2-Tetrachloroethane	U		0.28	1.0	μg/L	1	4/12/2019 04:37
1,1,1-Trichloroethane	U		0.33	1.0	μg/L	1	4/12/2019 04:37
1,1,2,2-Tetrachloroethane	U		0.17	1.0	μg/L	1	4/12/2019 04:37
1,1,2-Trichloroethane	0.60	J	0.22	1.0	μg/L	1	4/12/2019 04:37
1,1,2-Trichlorotrifluoroethane	U		0.18	1.0	µg/L	1	4/12/2019 04:37
1,1-Dichloroethane	U		0.48	1.0	μg/L	1	4/12/2019 04:37
1,1-Dichloroethene	2.6		0.36	1.0	μg/L	1	4/12/2019 04:37
1,1-Dichloropropene	U		0.28	1.0	μg/L	1	4/12/2019 04:37
1,2,3-Trichlorobenzene	U		0.29	1.0	μg/L	1	4/12/2019 04:37
1,2,3-Trichloropropane	U		0.29	1.0	μg/L	1	4/12/2019 04:37
1,2,4-Trichlorobenzene	U		0.25	1.0	μg/L	1	4/12/2019 04:37
1,2,4-Trimethylbenzene	U		0.11	1.0	μg/L	1	4/12/2019 04:37
1,2-Dibromo-3-chloropropane	U		0.43	1.0	μg/L	1	4/12/2019 04:37
1,2-Dibromoethane	U		0.17	1.0	µg/L	1	4/12/2019 04:37
1,2-Dichlorobenzene	U		0.12	1.0	µg/L	1	4/12/2019 04:37
1,2-Dichloroethane	U		0.11	1.0	μg/L	1	4/12/2019 04:37
1,2-Dichloropropane	U		0.34	1.0	μg/L	1	4/12/2019 04:37
1,3,5-Trichlorobenzene	U		0.25	1.0	μg/L	1	4/12/2019 04:37
1,3,5-Trimethylbenzene	U		0.15	1.0	μg/L	1	4/12/2019 04:37
1,3-Dichlorobenzene	U		0.13	1.0	μg/L	1	4/12/2019 04:37
1,3-Dichloropropane	U		0.14	1.0	μg/L	1	4/12/2019 04:37
1,4-Dichlorobenzene	U		0.13	1.0	μg/L	1	4/12/2019 04:37
2,2-Dichloropropane	U		0.31	1.0	μg/L	1	4/12/2019 04:37
2-Butanone	U		0.47	5.0	μg/L	1	4/12/2019 04:37
2-Chloroethyl vinyl ether	U		0.14	1.0	μg/L	1	4/12/2019 04:37
2-Chlorotoluene	U		0.14	1.0	μg/L	1	4/12/2019 04:37
2-Hexanone	U		0.50	5.0	μg/L	1	4/12/2019 04:37

Note:

Client:

BB&E, Inc.

Project:

SSW Collis 2019 LTM Task 1

Sample ID:

COL-GW-12

Collection Date: 4/9/2019 10:00 AM

Date: 18-Apr-19

Work Order: 1904634

Lab ID: 1904634-12

Matrix: GROUNDWATER

Analyses	Result	Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
2-Methylnaphthalene	U		0.28	5.0	μg/L	1	4/12/2019 04:37
4-Chlorotoluene	U		0.18	1.0	μg/L	1	4/12/2019 04:37
4-Isopropyltoluene	U		0.10	1.0	μg/L	1	4/12/2019 04:37
4-Methyl-2-pentanone	U		0.52	1.0	μg/L	1	4/12/2019 04:37
Acetone	9.4	J	0.47	10	μg/L	1	4/12/2019 04:37
Acrolein	U		0.38	1.0	μg/L	1	4/12/2019 04:37
Acrylonitrile	U		0.34	1.0	μg/L	1	4/12/2019 04:37
Benzene	U		0.42	1.0	μg/L	1	4/12/2019 04:37
Benzyl chloride	U		0.20	1.0	μg/L	1	4/12/2019 04:37
Bromobenzene	U		0.13	1.0	μg/L	1	4/12/2019 04:37
Bromochloromethane	U		0.15	1.0	μg/L	1	4/12/2019 04:37
Bromodichloromethane	U		0.22	1.0	μg/L	1	4/12/2019 04:37
Bromoform	U		0.56	1.0	μg/L	1	4/12/2019 04:37
Bromomethane	U		0.29	1.0	μg/L	1	4/12/2019 04:37
Carbon disulfide	U		0.39	1.0	μg/L	1	4/12/2019 04:37
Carbon tetrachloride	U		0.32	1.0	μg/L	1	4/12/2019 04:37
Chlorobenzene	U		0.21	1.0	μg/L	1	4/12/2019 04:37
Chloroethane	U		0.68	1.0	μg/L	1	4/12/2019 04:37
Chloroform	U		0.46	1.0	μg/L	1	4/12/2019 04:37
Chloromethane	U		0.68	1.0	μg/L	1	4/12/2019 04:37
cis-1,2-Dichloroethene	280		1.9	5.0	μg/L	5	4/13/2019 01:04
cis-1,3-Dichloropropene	U		0.13	1.0	μg/L	1	4/12/2019 04:37
Dibromochloromethane	U		0.20	1.0	μg/L	1	4/12/2019 04:37
Dibromomethane	U		0.16	1.0	µg/L	1	4/12/2019 04:37
Dichlorodifluoromethane	U	l	0.30	1.0	μg/L	1	4/12/2019 04:37
Ethylbenzene	U	l	0.29	1.0	μg/L	1	4/12/2019 04:37
Hexachlorobutadiene	U		0.15	1.0	μg/L	1	4/12/2019 04:37
Hexachloroethane	U	l	0.15	1.0	μg/L	1	4/12/2019 04:37
Hexane	U		0.18	1.0	μg/L	1	4/12/2019 04:37
lodomethane	Ĺ	J	0.44	1.0	μg/L	1	4/12/2019 04:37
Isopropylbenzene	L	J	0.17	1.0	μg/L	1	4/12/2019 04:37
m,p-Xylene	i.		0.53	2.0		1	4/12/2019 04:37
Methyl tert-butyl ether	Ĺ		0.21	1.0	μg/L	1	4/12/2019 04:37
Methylene chloride	Ü		0.16	5.0	μg/L	1	4/12/2019 04:37
Naphthalene	Ü		0.14	5.0		1	4/12/2019 04:37
n-Butylbenzene	· ·		0.090	1.0		1	4/12/2019 04:37
n-Propylbenzene	L		0.16	1.0		1	4/12/2019 04:37
o-Xylene	ĺ		0.19	1.0		1	4/12/2019 04:37
p-Isopropyltoluene	,		0.10	1.0		1	4/12/2019 04:37
sec-Butylbenzene	Ü		0.11	1.0		1	4/12/2019 04:37

Note:

Client:

BB&E, Inc.

Project:

SSW Collis 2019 LTM Task 1

Sample ID:

COL-GW-12

Collection Date: 4/9/2019 10:00 AM

Date: 18-Apr-19

Work Order: 1904634

Lab ID: 1904634-12

Matrix: GROUNDWATER

Analyses	Result	Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
Styrene	U		0.19	1.0	μg/L	1	4/12/2019 04:37
tert-Butyl alcohol	U		2.2	20	μg/L	1	4/12/2019 04:37
tert-Butylbenzene	U		0.10	1.0	μg/L	1	4/12/2019 04:37
Tetrachloroethene	U		0.28	1.0	μg/L	1	4/12/2019 04:37
Tetrahydrofuran	U		0.49	1.0	μg/L	1	4/12/2019 04:37
Toluene	U		0.32	1.0	µg/L	1	4/12/2019 04:37
trans-1,2-Dichloroethene	16		0.48	1.0	μg/L	1	4/12/2019 04:37
trans-1,3-Dichloropropene	U		0.15	1.0	μg/L	1	4/12/2019 04:37
trans-1,4-Dichloro-2-butene	U		0.58	2.0	μg/L	1	4/12/2019 04:37
Trichloroethene	250		1.6	5.0	μg/L	5	4/13/2019 01:04
Trichlorofluoromethane	U		0.24	1.0	μg/L	1	4/12/2019 04:37
Vinyl acetate	U		0.42	5.0	μg/L	1	4/12/2019 04:37
Vinyl chloride	47		0.53	1.0	μg/L	1	4/12/2019 04:37
Surr: 1,2-Dichloroethane-d4	99.6			75-120	%REC	1	4/12/2019 04:37
Surr: 1,2-Dichloroethane-d4	88.4			75-120	%REC	5	4/13/2019 01:04
Surr: 4-Bromofluorobenzene	99.6			80-110	%REC	1	4/12/2019 04:37
Surr: 4-Bromofluorobenzene	100			80-110	%REC	5	4/13/2019 01:04
Surr: Dibromofluoromethane	97.2			85-115	%REC	1	4/12/2019 04:37
Surr: Dibromofluoromethane	95.6			85-115	%REC	5	4/13/2019 01:04
Surr: Toluene-d8	99.0			85-110	%REC	1	4/12/2019 04:37
Surr: Toluene-d8	94.3			85-110	%REC	5	4/13/2019 01:04
ANIONS BY ION CHROMATOGRAPHY		Meth	od: SW9056A				Analyst: JDR
Chloride	68		6.2	20	mg/L	20	4/15/2019 13:55
Sulfate	100		6.9	20	mg/L	20	4/15/2019 13:55
NITROGEN, NITRATE-NITRITE		Meth	od: E353.2 R2	.0			Analyst: JZB
Nitrogen, Nitrate-Nitrite	U		0.012	0.020	mg/L	1	4/12/2019 12:52
SULFIDE		Meth	od: SW9034				Analyst: RZM
Sulfide	U		0.42	1.0	mg/L	1	4/16/2019 14:15

Note:

Client:

BB&E, Inc.

Project:

SSW Collis 2019 LTM Task 1

Sample ID:

COL-GW-13

Collection Date: 4/9/2019 10:00 AM

Date: 18-Apr-19

Work Order: 1904634

Lab ID: 1904634-13

Matrix: GROUNDWATER

Analyses	Result	Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
GASES IN WATER		Metl	nod: RSK-175				Analyst: KB
Ethane	U		0.21	5.0	μg/L	1	4/12/2019 15:08
Ethene	U		0.41	5.0	μg/L	1	4/12/2019 15:08
Methane	280		3.2	25	μg/L	5	4/12/2019 15:53
METALS BY ICP-MS (DISSOLVED)		Metl	nod: SW6020A		Prep: FILT	ΓER / 4/16/19	Analyst: STP
Iron	0.078	J	0.015	0.080	mg/L	1	4/16/2019 16:21
Manganese	0.30		0.00026	0.0050	mg/L	1	4/16/2019 16:21
1,4-DIOXANE BY SELECT ION MONITORING	3	Met	hod: SW8260B				Analyst: PM
1.4-Dioxane	U		0.44	0.60	μg/L	1	4/10/2019 16:07
Surr: Toluene-d8	125	S		74-124	%REC	1	4/10/2019 16:07
VOLATILE ORGANIC COMPOUNDS		Met	hod: SW8260C				Analyst: PM
1,1,1,2-Tetrachloroethane	U		0.28	1.0	μg/L	1	4/12/2019 04:54
1,1,1-Trichloroethane	U		0.33	1.0	µg/L	1	4/12/2019 04:54
1,1,2,2-Tetrachloroethane	U		0.17	1.0	μg/L	1	4/12/2019 04:54
1,1,2-Trichloroethane	0.61	J	0.22	1.0	μg/L	1	4/12/2019 04:54
1,1,2-Trichlorotrifluoroethane	U		0.18	1.0	µg/L	1	4/12/2019 04:54
1,1-Dichloroethane	U		0.48	1.0	μg/L	1	4/12/2019 04:54
1,1-Dichloroethene	2.8		0.36	1.0	μg/L	1	4/12/2019 04:54
1,1-Dichloropropene	U		0.28	1.0	μg/L	1	4/12/2019 04:54
1,2,3-Trichlorobenzene	U		0.29	1.0	μg/L	1	4/12/2019 04:54
1,2,3-Trichloropropane	U		0.29	1.0	μg/L	1	4/12/2019 04:54
1,2,4-Trichlorobenzene	U		0.25	1.0	μg/L	1	4/12/2019 04:54
1,2,4-Trimethylbenzene	U		0.11	1.0	μg/L	1	4/12/2019 04:54
1,2-Dibromo-3-chloropropane	U		0.43	1.0	μg/L	1	4/12/2019 04:54
1,2-Dibromoethane	U		0.17	1.0	μg/L	1	4/12/2019 04:54
1,2-Dichlorobenzene	U		0.12	1.0	μg/L	1	4/12/2019 04:54
1,2-Dichloroethane	U		0.11	1.0	μg/L	1	4/12/2019 04:54
1,2-Dichloropropane	U		0.34	1.0	μg/L	1	4/12/2019 04:54
1,3,5-Trichlorobenzene	U		0.25	1.0	μg/L	1	4/12/2019 04:54
1,3,5-Trimethylbenzene	U		0.15	1.0	μg/L	1	4/12/2019 04:54
1,3-Dichlorobenzene	U		0.13	1.0	μg/L	1	4/12/2019 04:54
1,3-Dichloropropane	U		0.14	1.0	μg/L	1	4/12/2019 04:54
1,4-Dichlorobenzene	U		0.13	1.0	μg/L	1	4/12/2019 04:54
2,2-Dichloropropane	U		0.31	1.0	μg/L	1	4/12/2019 04:54
2-Butanone	U		0.47	5.0	μg/L	1	4/12/2019 04:54
2-Chloroethyl vinyl ether	U		0.14	1.0	µg/L	1	4/12/2019 04:54
2-Chlorotoluene	U		0.14	1.0	µg/L	1	4/12/2019 04:54
2-Hexanone	U		0.50	5.0	μg/L	1	4/12/2019 04:54

Note:

Client:

BB&E, Inc.

Project:

SSW Collis 2019 LTM Task 1

Sample ID:

COL-GW-13

Collection Date: 4/9/2019 10:00 AM

Date: 18-Apr-19

Work Order: 1904634

Lab ID: 1904634-13

Matrix: GROUNDWATER

	Result	Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
2-Methylnaphthalene	U		0.28	5.0	μg/L	1	4/12/2019 04:54
4-Chlorotoluene	U		0.18	1.0	μg/L	1	4/12/2019 04:54
4-Isopropyltoluene	U		0.10	1.0	μg/L	1	4/12/2019 04:54
4-Methyl-2-pentanone	U		0.52	1.0	μg/L	1	4/12/2019 04:54
Acetone	2.4	J	0.47	10	μg/L	1	4/12/2019 04:54
Acrolein	U		0.38	1.0	μg/L	1	4/12/2019 04:54
Acrylonitrile	U		0.34	1.0	μg/L	1	4/12/2019 04:54
Benzene	U		0.42	1.0	μg/L	1	4/12/2019 04:54
Benzyl chloride	U		0.20	1.0	μg/L	1	4/12/2019 04:54
Bromobenzene	U		0.13	1.0	μg/L	1	4/12/2019 04:54
Bromochloromethane	U		0.15	1.0	μg/L	1	4/12/2019 04:54
Bromodichloromethane	U		0.22	1.0	μg/L	1	4/12/2019 04:54
Bromoform	Ū		0.56	1.0	μg/L	1	4/12/2019 04:54
Bromomethane	U		0.29	1.0	μg/L	1	4/12/2019 04:54
Carbon disulfide	U		0.39	1.0	μg/L	1	4/12/2019 04:54
Carbon tetrachloride	U		0.32	1.0	μg/L	1	4/12/2019 04:54
Chlorobenzene	U		0.21	1.0	μg/L	1	4/12/2019 04:54
Chloroethane	Ū		0.68	1.0	μg/L	1	4/12/2019 04:54
Chloroform	U		0.46	1.0	μg/L	1	4/12/2019 04:54
Chloromethane	U		0.68	1.0	μg/L	1	4/12/2019 04:54
cis-1,2-Dichloroethene	280		1.9	5.0	μg/L	5	4/13/2019 01:26
cis-1,3-Dichloropropene	U		0.13	1.0	μg/L	1	4/12/2019 01:26
Dibromochloromethane	Ü		0.10	1.0	μg/L μg/L	1	4/12/2019 04:54
Dibromomethane	U		0.16	1.0	μg/L μg/L	1	4/12/2019 04:54
Dichlorodifluoromethane	U		0.30	1.0	μg/L	1	
Ethylbenzene	Ü		0.29	1.0	μg/L μg/L	1	4/12/2019 04:54
Hexachlorobutadiene	Ü		0.25	1.0	μg/L μg/L	1	4/12/2019 04:54
Hexachloroethane	U		0.15	1.0			4/12/2019 04:54
Hexane	Ü		0.13	1.0	μg/L	1	4/12/2019 04:54
lodomethane	U		0.18	1.0	μg/L	1	4/12/2019 04:54
Isopropylbenzene	Ü		0.44	1.0	μg/L	1	4/12/2019 04:54
m,p-Xylene	Ü		0.17		μg/L	1	4/12/2019 04:54
Methyl tert-butyl ether	U			2.0	μg/L	1	4/12/2019 04:54
Methylene chloride	U		0.21	1.0	μg/L	1	4/12/2019 04:54
Naphthalene	U		0.16	5.0	µg/L	1	4/12/2019 04:54
n-Butylbenzene	U		0.14	5.0	μg/L	1	4/12/2019 04:54
n-Propylbenzene			0.090	1.0	μg/L	1	4/12/2019 04:54
o-Xylene	U		0.16	1.0	μg/L	1	4/12/2019 04:54
•	U		0.19	1.0	μg/L	1	4/12/2019 04:54
p-Isopropyltoluene sec-Butylbenzene	U U		0.10 0.11	1.0 1.0	μg/L μg/L	1 1	4/12/2019 04:54 4/12/2019 04:54

Note:

Client:

BB&E, Inc.

Project:

SSW Collis 2019 LTM Task 1

Sample ID:

COL-GW-13

Collection Date: 4/9/2019 10:00 AM

Date: 18-Apr-19

Work Order: 1904634

Lab ID: 1904634-13

Matrix: GROUNDWATER

Analyses	Result	Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
Styrene	U		0.19	1.0	μg/L	1	4/12/2019 04:54
tert-Butyl alcohol	U		2.2	20	μg/L	1	4/12/2019 04:54
tert-Butylbenzene	U		0.10	1.0	μg/L	1	4/12/2019 04:54
Tetrachloroethene	U		0.28	1.0	μg/L	1	4/12/2019 04:54
Tetrahydrofuran	U		0.49	1.0	μg/L	1	4/12/2019 04:54
Toluene	U		0.32	1.0	μg/L	1	4/12/2019 04:54
trans-1,2-Dichloroethene	10		0.48	1.0	μg/L	1	4/12/2019 04:54
trans-1,3-Dichloropropene	U		0.15	1.0	μg/L	1	4/12/2019 04:54
trans-1,4-Dichloro-2-butene	U		0.58	2.0	μg/L	1	4/12/2019 04:54
Trichloroethene	290		1.6	5.0	μg/L	5	4/13/2019 01:26
Trichlorofluoromethane	U		0.24	1.0	μg/L	1	4/12/2019 04:54
Vinyl acetate	U		0.42	5.0	μg/L	1	4/12/2019 04:54
Vinyl chloride	49		0.53	1.0	μg/L	1	4/12/2019 04:54
Surr: 1,2-Dichloroethane-d4	98.8			75-120	%REC	1	4/12/2019 04:54
Surr: 1,2-Dichloroethane-d4	88.4			75-120	%REC	5	4/13/2019 01:26
Surr: 4-Bromofluorobenzene	98.8			80-110	%REC	1	4/12/2019 04:54
Surr: 4-Bromofluorobenzene	98.4			80-110	%REC	5	4/13/2019 01:26
Surr: Dibromofluoromethane	98.3			85-115	%REC	1	4/12/2019 04:54
Surr: Dibromofluoromethane	97.2			85-115	%REC	5	4/13/2019 01:26
Surr: Toluene-d8	100			85-110	%REC	1	4/12/2019 04:54
Surr: Toluene-d8	95.8			85-110	%REC	5	4/13/2019 01:26
ANIONS BY ION CHROMATOGRAPHY		Meth	nod: SW9056	A.			Analyst: JDR
Chloride	72		6.2	20	mg/L	20	4/15/2019 14:11
Sulfate	110		6.9	20	mg/L	20	4/15/2019 14:11
NITROGEN, NITRATE-NITRITE		Meth	nod: E353.2 R	2.0			Analyst: JZB
Nitrogen, Nitrate-Nitrite	U		0.012	0.020	mg/L	1	4/12/2019 12:56
SULFIDE		Meth	nod: SW9034				Analyst: RZM
Sulfide	U		0.42	1.0	mg/L	1	4/16/2019 14:15

Client:

BB&E, Inc.

Project:

SSW Collis 2019 LTM Task 1

Sample ID:

COL-GW-14

Collection Date: 4/9/2019 11:25 AM

Date: 18-Apr-19

Work Order: 1904634

Lab ID: 1904634-14

Matrix: GROUNDWATER

Analyses	Result	Qual MDL	Report Limit	Units	Dilution Factor	Date Analyzed
GASES IN WATER		Method: RSK-175				Analyst: KB
Ethane	U	0.21	5.0	μg/L	1	4/12/2019 15:14
Ethene	U	0.41	5.0	µg/L	1	4/12/2019 15:14
Methane	44	0.64	5.0	μg/L	1	4/12/2019 15:14
METALS BY ICP-MS (DISSOLVED)		Method: SW6020A		Prep: FIL	TER / 4/16/19	Analyst: STP
Iron	U	0.015	0.080	mg/L	1	4/16/2019 16:23
Manganese	0.12	0.00026	0.0050	mg/L	1	4/16/2019 16:23
1,4-DIOXANE BY SELECT ION MONITORING	G	Method: SW8260B				Analyst: PM
1,4-Dioxane	U	0.44	0.60	μg/L	1	4/10/2019 16:22
Surr: Toluene-d8	90.2		74-124	%REC	1	4/10/2019 16:22
VOLATILE ORGANIC COMPOUNDS		Method: SW8260C				Analyst: BC
1,1,1,2-Tetrachloroethane	U	0.28	1.0	μg/L	1	Analyst: BG 4/16/2019 18:00
1,1,1-Trichloroethane	Ü	0.33	1.0	μg/L	1	4/16/2019 18:00
1,1,2,2-Tetrachloroethane	U	0.17	1.0	μg/L	1	4/16/2019 18:00
1,1,2-Trichloroethane	U	0.22	1.0	μg/L	1	4/16/2019 18:00
1,1,2-Trichlorotrifluoroethane	U	0.18	1.0	μg/L	1	4/16/2019 18:00
1,1-Dichloroethane	U	0.48	1.0	μg/L	1	4/16/2019 18:00
1,1-Dichloroethene	U	0.36	1.0	μg/L	1	4/16/2019 18:00
1,1-Dichloropropene	U	0.28	1.0	μg/L	1	4/16/2019 18:00
1,2,3-Trichlorobenzene	U	0.29	1.0	μg/L	1	4/16/2019 18:00
1,2,3-Trichloropropane	U	0.29	1.0	μg/L	1	4/16/2019 18:00
1,2,4-Trichlorobenzene	U	0.25	1.0	μg/L	1	4/16/2019 18:00
1,2,4-Trimethylbenzene	U	0.11	1.0	μg/L	1	4/16/2019 18:00
1,2-Dibromo-3-chloropropane	U	0.43	1.0	μg/L	1	4/16/2019 18:00
1,2-Dibromoethane	U	0.17	1.0	μg/L	1	4/16/2019 18:00
1,2-Dichlorobenzene	U	0.12	1.0	μg/L	1	4/16/2019 18:00
1,2-Dichloroethane	U	0.11	1.0	μg/L	1	4/16/2019 18:00
1,2-Dichloropropane	U	0.34	1.0	μg/L	1	4/16/2019 18:00
1,3,5-Trichlorobenzene	U	0.25	1.0	μg/L	1	4/16/2019 18:00
1,3,5-Trimethylbenzene	U	0.15	1.0	μg/L	1	4/16/2019 18:00
1,3-Dichlorobenzene	U	0.13	1.0	μg/L	1	4/16/2019 18:00
1,3-Dichloropropane	U	0.14	1.0	μg/L	1	4/16/2019 18:00
1,4-Dichlorobenzene	U	0.13	1.0	μg/L	1	4/16/2019 18:00
2,2-Dichloropropane	U	0.31	1.0	μg/L	1	4/16/2019 18:00
2-Butanone	U	0.47	5.0	μg/L	1	4/16/2019 18:00
2-Chloroethyl vinyl ether	U	0.14	1.0	μg/L	1	4/16/2019 18:00
2-Chlorotoluene	U	0.14	1.0	μg/L	1	4/16/2019 18:00
2-Hexanone	U	0.50	5.0	μg/L	1	4/16/2019 18:00

Client: BB&E, Inc.

SSW Collis 2019 LTM Task 1 Project:

Sample ID: COL-GW-14

Collection Date: 4/9/2019 11:25 AM

Date: 18-Apr-19

Work Order: 1904634

Lab ID: 1904634-14

Matrix: GROUNDWATER

Analyses	Result	Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
2-Methylnaphthalene	U		0.28	5.0	μg/L	1	4/16/2019 18:00
4-Chlorotoluene	U		0.18	1.0	μg/L	1	4/16/2019 18:00
4-Isopropyltoluene	U		0.10	1.0	μg/L	1	4/16/2019 18:00
4-Methyl-2-pentanone	U		0.52	1.0	μg/L	1	4/16/2019 18:00
Acetone	0.64	J	0.47	10	μg/L	1	4/16/2019 18:00
Acrolein	U		0.38	1.0	μg/L	1	4/16/2019 18:00
Acrylonitrile	U		0.34	1.0	μg/L	1	4/16/2019 18:00
Benzene	U		0.42	1.0	μg/L	1	4/16/2019 18:00
Benzyl chloride	U		0.20	1.0	μg/L	1	4/16/2019 18:00
Bromobenzene	U		0.13	1.0	μg/L	1	4/16/2019 18:00
Bromochloromethane	U		0.15	1.0	μg/L	1	4/16/2019 18:00
Bromodichloromethane	U		0.22	1.0	μg/L	1	4/16/2019 18:00
Bromoform	U		0.56	1.0	μg/L	1	4/16/2019 18:00
Bromomethane	U		0.29	1.0	μg/L	1	4/16/2019 18:00
Carbon disulfide	U		0.39	1.0	μg/L	1	4/16/2019 18:00
Carbon tetrachloride	U		0.32	1.0	μg/L	1	4/16/2019 18:00
Chlorobenzene	U		0.21	1.0	μg/L	1	4/16/2019 18:00
Chloroethane	U		0.68	1.0	μg/L	1	4/16/2019 18:0
Chloroform	U		0.46	1.0	μg/L	1	4/16/2019 18:0
Chloromethane	U		0.68	1.0	μg/L	1	4/16/2019 18:0
cis-1,2-Dichloroethene	65		0.38	1.0	μg/L	1	4/16/2019 18:0
cis-1,3-Dichloropropene	U		0.13	1.0	μg/L	1	4/16/2019 18:0
Dibromochloromethane	Ü		0.20	1.0	μg/L	1	4/16/2019 18:0
Dibromomethane	Ü		0.16	1.0	μg/L	1	4/16/2019 18:0
Dichlorodifluoromethane	U		0.30	1.0	μg/L	1	4/16/2019 18:0
Ethylbenzene	U		0.29	1.0	μg/L	1	4/16/2019 18:0
Hexachlorobutadiene	U		0.15	1.0	μg/L	1	4/16/2019 18:0
Hexachloroethane	U		0.15	1.0	μg/L	1	4/16/2019 18:0
Hexane	U		0.18	1.0	μg/L	1	4/16/2019 18:0
lodomethane	U		0.44	1.0	μg/L	1	4/16/2019 18:0
Isopropylbenzene	U		0.17	1.0	μg/L	1	4/16/2019 18:00
m,p-Xylene	U		0.53	2.0	µg/L	1	4/16/2019 18:0
Methyl tert-butyl ether	U		0.21	1.0	µg/L	1	4/16/2019 18:0
Methylene chloride	U		0.16	5.0	μg/L	1	4/16/2019 18:0
Naphthalene	Ü		0.14	5.0	μg/L	1	4/16/2019 18:0
n-Butylbenzene	U		0.090	1.0	μg/L	1	4/16/2019 18:0
n-Propylbenzene	U		0.16	1.0	µg/L	1	4/16/2019 18:0
o-Xylene	Ü		0.19	1.0	μg/L	1	4/16/2019 18:0
	U		0.10	1.0	μg/L	1	4/16/2019 18:0
p-Isopropyltoluene sec-Butylbenzene	U		0.10	1.0	μg/L	1	4/16/2019 18:00

Client:

BB&E, Inc.

Project:

Sample ID:

COL-GW-14

Collection Date: 4/9/2019 11:25 AM

SSW Collis 2019 LTM Task 1

Date: 18-Apr-19

Work Order: 1904634

Lab ID: 1904634-14

Matrix: GROUNDWATER

Analyses	Result	Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
Styrene	U		0.19	1.0	μg/L	1	4/16/2019 18:00
tert-Butyl alcohol	U		2.2	20	µg/L	1	4/16/2019 18:00
tert-Butylbenzene	U		0.10	1.0	µg/L	1	4/16/2019 18:00
Tetrachloroethene	U		0.28	1.0	μg/L	1	4/16/2019 18:00
Tetrahydrofuran	U		0.49	1.0	μg/L	1	4/16/2019 18:00
Toluene	U		0.32	1.0	μg/L	1	4/16/2019 18:00
trans-1,2-Dichloroethene	1.0		0.48	1.0	μg/L	1	4/16/2019 18:00
trans-1,3-Dichloropropene	U		0.15	1.0	μg/L	1	4/16/2019 18:00
trans-1,4-Dichloro-2-butene	U		0.58	2.0	μg/L	1	4/16/2019 18:00
Trichloroethene	9.6		0.33	1.0	μg/L	1	4/16/2019 18:00
Trichlorofluoromethane	U		0.24	1.0	μg/L	1	4/16/2019 18:00
Vinyl acetate	U		0.42	5.0	μg/L	1	4/16/2019 18:00
Vinyl chloride	0.66	J	0.53	1.0	μg/L	1	4/16/2019 18:00
Surr: 1,2-Dichloroethane-d4	96.0			75-120	%REC	1	4/16/2019 18:00
Surr: 4-Bromofluorobenzene	100			80-110	%REC	1	4/16/2019 18:00
Surr: Dibromofluoromethane	97.2			85-115	%REC	1	4/16/2019 18:00
Surr: Toluene-d8	101			85-110	%REC	1	4/16/2019 18:00
ANIONS BY ION CHROMATOGRAPHY		Met	nod: SW9056A				Analyst: JDR
Chloride	75		3.1	10	mg/L	10	4/15/2019 14:28
Sulfate	65		3.4	10	mg/L	10	4/15/2019 14:28
NITROGEN, NITRATE-NITRITE		Meti	nod: E353.2 R2	.0			Analyst: JZB
Nitrogen, Nitrate-Nitrite	0.82		0.012	0.020	mg/L	1	4/12/2019 12:57
SULFIDE		Meth	nod: SW9034				Analyst: RZM
Sulfide	U		0.42	1.0	mg/L	1	4/16/2019 14:15

Note:

Client:

BB&E, Inc.

Project:

SSW Collis 2019 LTM Task 1

Sample ID:

COL-GW-15

Collection Date: 4/9/2019 12:20 PM

Date: 18-Apr-19

Work Order: 1904634

Lab ID: 1904634-15

Matrix: GROUNDWATER

Analyses	Result	Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
VOLATILE ORGANIC COMPOUNDS		Meth	nod: SW8260 0	;			Analyst: PM
1,1,1,2-Tetrachloroethane	U		0.28	1.0	μg/L	1	4/12/2019 05:27
1,1,1-Trichloroethane	U		0.33	1.0	μg/L	1	4/12/2019 05:27
1,1,2,2-Tetrachloroethane	U		0.17	1.0	μg/L	1	4/12/2019 05:27
1,1,2-Trichloroethane	U		0.22	1.0	μg/L	1	4/12/2019 05:27
1,1,2-Trichlorotrifluoroethane	U		0.18	1.0	μg/L	1	4/12/2019 05:27
1,1-Dichloroethane	U		0.48	1.0	μg/L	1	4/12/2019 05:27
1,1-Dichloroethene	1.0		0.36	1.0	μg/L	1	4/12/2019 05:27
1,1-Dichloropropene	U		0.28	1.0	μg/L	1	4/12/2019 05:27
1,2,3-Trichlorobenzene	U		0.29	1.0	μg/L	1	4/12/2019 05:27
1,2,3-Trichloropropane	U		0.29	1.0	μg/L	1	4/12/2019 05:27
1,2,4-Trichlorobenzene	U		0.25	1.0	μg/L	1	4/12/2019 05:27
1,2,4-Trimethylbenzene	U		0.11	1.0	μg/L	1	4/12/2019 05:27
1,2-Dibromo-3-chloropropane	U		0.43	1.0	μg/L	1	4/12/2019 05:27
1,2-Dibromoethane	U		0.17	1.0	μg/L	1	4/12/2019 05:27
1,2-Dichlorobenzene	U		0.12	1.0	μg/L	1	4/12/2019 05:27
1,2-Dichloroethane	U		0.11	1.0	μg/L	1	4/12/2019 05:27
1,2-Dichloropropane	U		0.34	1.0	μg/L	1	4/12/2019 05:27
1,3,5-Trichlorobenzene	U		0.25	1.0	μg/L	1	4/12/2019 05:27
1,3,5-Trimethylbenzene	U		0.15	1.0	μg/L	1	4/12/2019 05:27
1,3-Dichlorobenzene	U		0.13	1.0	μg/L	1	4/12/2019 05:27
1,3-Dichloropropane	U		0.14	1.0	μg/L	1	4/12/2019 05:27
1,4-Dichlorobenzene	U		0.13	1.0	μg/L	1	4/12/2019 05:27
2,2-Dichloropropane	U		0.31	1.0	μg/L	1	4/12/2019 05:27
2-Butanone	U		0.47	5.0	μg/L	1	4/12/2019 05:27
2-Chloroethyl vinyl ether	U		0.14	1.0	μg/L	1	4/12/2019 05:27
2-Chlorotoluene	U		0.14	1.0	μg/L	1	4/12/2019 05:27
2-Hexanone	U		0.50	5.0	μg/L	1	4/12/2019 05:27
2-Methylnaphthalene	U		0.28	5.0	μg/L	1	4/12/2019 05:27
4-Chlorotoluene	U		0.18	1.0	μg/L	1	4/12/2019 05:27
4-Isopropyltoluene	U		0.10	1.0	μg/L	1	4/12/2019 05:27
4-Methyl-2-pentanone	U		0.52	1.0	μg/L	1	4/12/2019 05:27
Acetone	0.99	J	0.47	10	μg/L	1	4/12/2019 05:27
Acrolein	U		0.38	1.0	μg/L	1	4/12/2019 05:27
Acrylonitrile	U		0.34	1.0	μg/L	1	4/12/2019 05:27
Benzene	U		0.42	1.0	μg/L	1	4/12/2019 05:27
Benzyl chloride	U		0.20	1.0	μg/L	1	4/12/2019 05:27
Bromobenzene	U		0.13	1.0	μg/L	1	4/12/2019 05:27
Bromochloromethane	U		0.15	1.0	μg/L	1	4/12/2019 05:27

Note:

Client:

BB&E, Inc.

Project:

SSW Collis 2019 LTM Task 1

Sample ID:

COL-GW-15

Collection Date: 4/9/2019 12:20 PM

Date: 18-Apr-19

Work Order: 1904634

Lab ID: 1904634-15

Matrix: GROUNDWATER

Analyses	Result Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
Bromodichloromethane	U	0.22	1.0	μg/L	1	4/12/2019 05:27
Bromoform	U	0.56	1.0	μg/L	1	4/12/2019 05:27
Bromomethane	U	0.29	1.0	μg/L	1	4/12/2019 05:27
Carbon disulfide	U	0.39	1.0	μg/L	1	4/12/2019 05:27
Carbon tetrachloride	U	0.32	1.0	μg/L	1	4/12/2019 05:27
Chlorobenzene	U	0.21	1.0	μg/L	1	4/12/2019 05:27
Chloroethane	U	0.68	1.0	μg/L	1	4/12/2019 05:27
Chloroform	U	0.46	1.0	μg/L	1	4/12/2019 05:27
Chloromethane	U	0.68	1.0	μg/L	1	4/12/2019 05:27
cis-1,2-Dichloroethene	210	1.9	5.0	μg/L	5	4/13/2019 01:48
cis-1,3-Dichloropropene	U	0.13	1.0	μg/L	1	4/12/2019 05:27
Dibromochloromethane	U	0.20	1.0	μg/L	1	4/12/2019 05:27
Dibromomethane	U	0.16	1.0	µg/L	1	4/12/2019 05:27
Dichlorodifluoromethane	U	0.30	1.0	µg/L	1	4/12/2019 05:27
Ethylbenzene	U	0.29	1.0	µg/L	1	4/12/2019 05:27
Hexachlorobutadiene	U	0.15	1.0	μg/L	1	4/12/2019 05:27
Hexachloroethane	U	0.15	1.0	μg/L	1	4/12/2019 05:27
Hexane	U	0.18	1.0	μg/L	1	4/12/2019 05:27
lodomethane	U	0.44	1.0	μg/L	1	4/12/2019 05:27
Isopropylbenzene	U	0.17	1.0	μg/L	1	4/12/2019 05:27
m,p-Xylene	U	0.53	2.0	μg/L	1	4/12/2019 05:27
Methyl tert-butyl ether	U	0.21	1.0	μg/L	1	4/12/2019 05:27
Methylene chloride	U	0.16	5.0	μg/L	1	4/12/2019 05:27
Naphthalene	U	0.14	5.0	μg/L	1	4/12/2019 05:27
n-Butylbenzene	U	0.090	1.0	μg/L	1	4/12/2019 05:27
n-Propylbenzene	U	0.16	1.0	μg/L	1	4/12/2019 05:27
o-Xylene	U	0.19	1.0	μg/L	1	4/12/2019 05:27
p-Isopropyltoluene	U	0.10	1.0	μg/L	1	4/12/2019 05:27
sec-Butylbenzene	U	0.11	1.0	μg/L	1	4/12/2019 05:27
Styrene	U	0.19	1.0	μg/L	1	4/12/2019 05:27
tert-Butyl alcohol	U	2.2	20	μg/L	1	4/12/2019 05:27
tert-Butylbenzene	U	0.10	1.0	μg/L	1	4/12/2019 05:27
Tetrachloroethene	U	0.28	1.0	μg/L	1	4/12/2019 05:27
Tetrahydrofuran	U	0.49	1.0	μg/L	1	4/12/2019 05:27
Toluene	U	0.32	1.0	μg/L	1	4/12/2019 05:27
trans-1,2-Dichloroethene	8.8	0.48	1.0	μg/L	1	4/12/2019 05:27
trans-1,3-Dichloropropene	U	0.15	1.0	μg/L	1	4/12/2019 05:27
trans-1,4-Dichloro-2-butene	U	0.58	2.0	μg/L	1	4/12/2019 05:27
Trichloroethene	U	0.33	1.0	μg/L	1	4/12/2019 05:27
Trichlorofluoromethane	U	0.24	1.0	µg/L	1	4/12/2019 05:27

Note:

Client:

BB&E, Inc.

Project:

SSW Collis 2019 LTM Task 1

Sample ID:

COL-GW-15

Collection Date: 4/9/2019 12:20 PM

Date: 18-Apr-19

Work Order: 1904634

Lab ID: 1904634-15

Matrix: GROUNDWATER

Analyses	Result Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
Vinyl acetate	U	0.42	5.0	μg/L	1	4/12/2019 05:27
Vinyl chloride	75	0.53	1.0	μg/L	1	4/12/2019 05:27
Surr: 1,2-Dichloroethane-d4	99.2		75-120	%REC	1	4/12/2019 05:27
Surr: 1,2-Dichloroethane-d4	87.6		75-120	%REC	5	4/13/2019 01:48
Surr: 4-Bromofluorobenzene	99.6		80-110	%REC	1	4/12/2019 05:27
Surr: 4-Bromofluorobenzene	98.0		80-110	%REC	5	4/13/2019 01:48
Surr: Dibromofluoromethane	95.4		85-115	%REC	1	4/12/2019 05:27
Surr: Dibromofluoromethane	94.4		85-115	%REC	5	4/13/2019 01:48
Surr: Toluene-d8	98.8		85-110	%REC	1	4/12/2019 05:27
Surr: Toluene-d8	94.6		85-110	%REC	5	4/13/2019 01:48

Client:

BB&E, Inc.

Project:

SSW Collis 2019 LTM Task 1

Sample ID:

EB

Collection Date: 4/9/2019 12:30 PM

Date: 18-Apr-19

Work Order: 1904634

Lab ID: 1904634-16

Matrix: WATER

Analyses	Result	Qual MDL	Report Limit	Units	Dilution Factor	Date Analyzed
GASES IN WATER		Method: RSK-17	5	300000000000000000000000000000000000000		Analyst: KB
Ethane	U	0.21	5.0	μg/L	1	4/12/2019 15:11
Ethene	U	0.41	5.0	μg/L	1	4/12/2019 15:11
Methane	U	0.64	5.0	μg/L	1	4/12/2019 15:11
METALS BY ICP-MS (DISSOLVED)		Method: SW6020	A	Prep: FIL	ΓER / 4/16/19	Analyst: STP
Iron	U	0.015	0.080	mg/L	1	4/16/2019 16:24
Manganese	U	0.00026	0.0050	mg/L	1	4/16/2019 16:24
1,4-DIOXANE BY SELECT ION MONITORII	NG	Method: SW8260	В			Analyst: PM
1,4-Dioxane	U	0.44	0.60	μg/L	1	4/10/2019 16:37
Surr: Toluene-d8	114		74-124	%REC	1	4/10/2019 16:37
VOLATILE ORGANIC COMPOUNDS		Method: SW8260	C.			Analyst: PM
1,1,1,2-Tetrachloroethane	U	0.28	1.0	μg/L	1	4/12/2019 05:44
1,1,1-Trichloroethane	U	0.33	1.0	μg/L	1	4/12/2019 05:44
1,1,2,2-Tetrachloroethane	U	0.17	1.0	μg/L	1	4/12/2019 05:44
1,1,2-Trichloroethane	U	0.22	1.0	μg/L	1	4/12/2019 05:44
1,1,2-Trichlorotrifluoroethane	U	0.18	1.0	μg/L	1	4/12/2019 05:44
1,1-Dichloroethane	U	0.48	1.0	μg/L	1	4/12/2019 05:44
1,1-Dichloroethene	U	0.36	1.0	μg/L	1	4/12/2019 05:44
1,1-Dichloropropene	U	0.28	1.0	µg/L	1	4/12/2019 05:44
1,2,3-Trichlorobenzene	U	0.29	1.0	μg/L	1	4/12/2019 05:44
1,2,3-Trichloropropane	U	0.29	1.0	μg/L	1	4/12/2019 05:44
1,2,4-Trichlorobenzene	U	0.25	1.0	μg/L	1	4/12/2019 05:44
1,2,4-Trimethylbenzene	U	0.11	1.0	μg/L	1	4/12/2019 05:44
1,2-Dibromo-3-chloropropane	U	0.43	1.0	μg/L	1	4/12/2019 05:44
1,2-Dibromoethane	U	0.17	1.0	μg/L	1	4/12/2019 05:44
1,2-Dichlorobenzene	U	0.12	1.0	µg/L	1	4/12/2019 05:44
1,2-Dichloroethane	U	0.11	1.0	μg/L	1	4/12/2019 05:44
1,2-Dichloropropane	U	0.34	1.0	μg/L	1	4/12/2019 05:44
1,3,5-Trichlorobenzene	U	0.25	1.0	μg/L	1	4/12/2019 05:44
1,3,5-Trimethylbenzene	U	0.15	1.0	μg/L	1	4/12/2019 05:44
1,3-Dichlorobenzene	U	0.13	1.0	μg/L	1	4/12/2019 05:44
1,3-Dichloropropane	U	0.14	1.0	μg/L	1	4/12/2019 05:44
1,4-Dichlorobenzene	U	0.13	1.0	μg/L	1	4/12/2019 05:44
2,2-Dichloropropane	U	0.31	1.0	μg/L	1	4/12/2019 05:44
2-Butanone	5.2	0.47	5.0	μg/L	1	4/12/2019 05:44
2-Chloroethyl vinyl ether	U	0.14	1.0	µg/L	1	4/12/2019 05:44
2-Chlorotoluene	U	0.14	1.0	μg/L	1	4/12/2019 05:44
2-Hexanone	U	0.50	5.0	µg/L	1	4/12/2019 05:44

Client:

BB&E, Inc.

Project:

SSW Collis 2019 LTM Task 1

Sample ID:

Collection Date: 4/9/2019 12:30 PM

Date: 18-Apr-19

Work Order: 1904634

Lab ID: 1904634-16

Matrix: WATER

Analyses	Result	Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
2-Methylnaphthalene	U		0.28	5.0	μg/L	1	4/12/2019 05:44
4-Chlorotoluene	U		0.18	1.0	μg/L	1	4/12/2019 05:44
4-Isopropyltoluene	U		0.10	1.0	μg/L	1	4/12/2019 05:44
4-Methyl-2-pentanone	U		0.52	1.0	μg/L	1	4/12/2019 05:44
Acetone	20		0.47	10	μg/L	1	4/12/2019 05:44
Acrolein	U		0.38	1.0	μg/L	1	4/12/2019 05:44
Acrylonitrile	U		0.34	1.0	μg/L	1	4/12/2019 05:44
Benzene	U		0.42	1.0	μg/L	1	4/12/2019 05:44
Benzyl chloride	U		0.20	1.0	μg/L	1	4/12/2019 05:44
Bromobenzene	U		0.13	1.0	μg/L	1	4/12/2019 05:44
Bromochloromethane	U		0.15	1.0	μg/L	1	4/12/2019 05:44
Bromodichloromethane	U		0.22	1.0	μg/L	1	4/12/2019 05:44
Bromoform	U		0.56	1.0	μg/L	1	4/12/2019 05:44
Bromomethane	U		0.29	1.0	μg/L	1	4/12/2019 05:44
Carbon disulfide	U		0.39	1.0	μg/L	1	4/12/2019 05:44
Carbon tetrachloride	U		0.32	1.0	μg/L	1	4/12/2019 05:44
Chlorobenzene	U		0.21	1.0	μg/L	1	4/12/2019 05:44
Chloroethane	U		0.68	1.0	μg/L	1	4/12/2019 05:44
Chloroform	Ü		0.46	1.0	μg/L	1	4/12/2019 05:44
Chloromethane	U		0.68	1.0	μg/L	1	4/12/2019 05:44
cis-1,2-Dichloroethene	0.47	J	0.38	1.0	μg/L	1	4/12/2019 05:44
cis-1,3-Dichloropropene	U		0.13	1.0	μg/L	1	4/12/2019 05:44
Dibromochloromethane	U		0.20	1.0	μg/L	1	4/12/2019 05:44
Dibromomethane	U		0.16	1.0	μg/L	1	4/12/2019 05:44
Dichlorodifluoromethane	U		0.30	1.0	µg/L	1	4/12/2019 05:44
Ethylbenzene	0.43	J	0.29	1.0	μg/L	1	4/12/2019 05:44
Hexachlorobutadiene	U		0.15	1.0	μg/L	1	4/12/2019 05:44
Hexachloroethane	U		0.15	1.0	μg/L	1	4/12/2019 05:44
Hexane	U		0.18	1.0	μg/L	1	4/12/2019 05:44
lodomethane	U		0.44	1.0	μg/L	1	4/12/2019 05:44
Isopropylbenzene	U		0.17	1.0	μg/L	1	4/12/2019 05:44
m,p-Xylene	1.9	J	0.53	2.0	μg/L	1	4/12/2019 05:44
Methyl tert-butyl ether	U		0.21	1.0	μg/L	1	4/12/2019 05:44
Methylene chloride	U		0.16	5.0	μg/L	1	4/12/2019 05:44
Naphthalene	U		0.14	5.0	μg/L	1	4/12/2019 05:44
n-Butylbenzene	U		0.090	1.0	μg/L	1	4/12/2019 05:44
n-Propylbenzene	U		0.16	1.0	μg/L	1	4/12/2019 05:44
o-Xylene	0.47	J	0.19	1.0	μg/L	1	4/12/2019 05:44
p-Isopropyltoluene	U		0.10	1.0	μg/L	1	4/12/2019 05:44
sec-Butylbenzene	U		0.11	1.0	µg/L	1	4/12/2019 05:44

Note:

Client:

BB&E, Inc.

Project:

SSW Collis 2019 LTM Task 1

Sample ID:

EB

Collection Date: 4/9/2019 12:30 PM

Date: 18-Apr-19

Work Order: 1904634

Lab ID: 1904634-16

Matrix: WATER

Analyses	Result	Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
Styrene	U		0.19	1.0	μg/L	1	4/12/2019 05:44
tert-Butyl alcohol	5.2	J	2.2	20	μg/L	1	4/12/2019 05:44
tert-Butylbenzene	U		0.10	1.0	μg/L	1	4/12/2019 05:44
Tetrachloroethene	U		0.28	1.0	μg/L	1	4/12/2019 05:44
Tetrahydrofuran	U		0.49	1.0	µg/L	1	4/12/2019 05:44
Toluene	1.2		0.32	1.0	μg/L	1	4/12/2019 05:44
trans-1,2-Dichloroethene	U		0.48	1.0	μg/L	1	4/12/2019 05:44
trans-1,3-Dichloropropene	U		0.15	1.0	μg/L	1	4/12/2019 05:44
trans-1,4-Dichloro-2-butene	U		0.58	2.0	μg/L	1	4/12/2019 05:44
Trichloroethene	U		0.33	1.0	μg/L	1	4/12/2019 05:44
Trichlorofluoromethane	U		0.24	1.0	μg/L	1	4/12/2019 05:44
Vinyl acetate	U		0.42	5.0	μg/L	1	4/12/2019 05:44
Vinyl chloride	U		0.53	1.0	μg/L	1	4/12/2019 05:44
Surr: 1,2-Dichloroethane-d4	101			75-120	%REC	1	4/12/2019 05:44
Surr: 4-Bromofluorobenzene	98.6			80-110	%REC	1	4/12/2019 05:44
Surr: Dibromofluoromethane	98.6			85-115	%REC	1	4/12/2019 05:44
Surr: Toluene-d8	98.9			85-110	%REC	1	4/12/2019 05:44
ANIONS BY ION CHROMATOGRAPHY		Me	thod: SW9056A				Analyst: JDR
Chloride	0.37	J	0.31	1.0	mg/L	1	4/15/2019 13:07
Sulfate	U		0.34	1.0	mg/L	1	4/15/2019 13:07
NITROGEN, NITRATE-NITRITE		Met	thod: E353.2 R2	2.0			Analyst: JZB
Nitrogen, Nitrate-Nitrite	U		0.012	0.020	mg/L	1	4/12/2019 12:58
SULFIDE		Met	thod: SW9034				Analyst: RZM
Sulfide	U		0.42	1.0	mg/L	1	4/16/2019 14:15

Note:

Client:

BB&E, Inc.

Project:

SSW Collis 2019 LTM Task 1

Sample ID:

Trip Blank

Collection Date: 4/9/2019

Date: 18-Apr-19

Work Order: 1904634

Lab ID: 1904634-17

Matrix: WATER

Analyses	Result (Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
VOLATILE ORGANIC COMPOUNDS		Meth	od: SW8260C				Analyst: PM
1,1,1,2-Tetrachloroethane	U		0.28	1.0	μg/L	1	4/12/2019 01:18
1,1,1-Trichloroethane	U		0.33	1.0	μg/L	1	4/12/2019 01:18
1,1,2,2-Tetrachloroethane	U		0.17	1.0	μg/L	1	4/12/2019 01:18
1.1,2-Trichloroethane	U		0.22	1.0	μg/L	1	4/12/2019 01:18
1,1,2-Trichlorotrifluoroethane	U		0.18	1.0	μg/L	1	4/12/2019 01:18
1,1-Dichloroethane	U		0.48	1.0	µg/L	1	4/12/2019 01:18
1,1-Dichloroethene	U		0.36	1.0	μg/L	1	4/12/2019 01:18
1,1-Dichloropropene	U		0.28	1.0	μg/L	, 1	4/12/2019 01:18
1,2,3-Trichlorobenzene	U		0.29	1.0	μg/L	1	4/12/2019 01:18
1,2,3-Trichloropropane	U		0.29	1.0	µg/L	1	4/12/2019 01:18
1,2,4-Trichlorobenzene	U		0.25	1.0	µg/L	1	4/12/2019 01:18
1,2,4-Trimethylbenzene	U		0.11	1.0	μg/L	1	4/12/2019 01:18
1,2-Dibromo-3-chloropropane	U		0.43	1.0	μg/L	1	4/12/2019 01:18
1,2-Dibromoethane	U		0.17	1.0	μg/L	1	4/12/2019 01:18
1,2-Dichlorobenzene	U		0.12	1.0	μg/L	1	4/12/2019 01:18
1,2-Dichloroethane	U		0.11	1.0	μg/L	1	4/12/2019 01:1
1,2-Dichloropropane	U		0.34	1.0	μg/L	1	4/12/2019 01:1
1,3,5-Trichlorobenzene	U		0.25	1.0	μg/L	1	4/12/2019 01:1
1,3,5-Trimethylbenzene	Ū		0.15	1.0	μg/L	1	4/12/2019 01:1
1,3-Dichlorobenzene	Ū		0.13	1.0	μg/L	1	4/12/2019 01:1
1,3-Dichloropropane	U		0.14	1.0	μg/L	1	4/12/2019 01:1
1,4-Dichlorobenzene	U		0.13	1.0	μg/L	1	4/12/2019 01:1
2,2-Dichloropropane	Ū		0.31	1.0	μg/L	1	4/12/2019 01:18
2-Butanone	Ü		0.47	5.0	μg/L	1	4/12/2019 01:18
2-Chloroethyl vinyl ether	Ü		0.14	1.0	μg/L	1	4/12/2019 01:18
2-Chlorotoluene	U		0.14	1.0	μg/L	1	4/12/2019 01:18
2-Hexanone	U		0.50	5.0	μg/L	1	4/12/2019 01:18
2-Methylnaphthalene	Ü		0.28	5.0	μg/L	1	4/12/2019 01:18
4-Chlorotoluene	U		0.18	1.0	μg/L	1	4/12/2019 01:18
4-Isopropyltoluene	U		0.10	1.0	µg/L	1	4/12/2019 01:1
4-Methyl-2-pentanone	Ü		0.52	1.0	μg/L	1	4/12/2019 01:18
Acetone	0.89	J	0.47	10	μg/L	1	4/12/2019 01:18
Acrolein	U.89	Ū	0.38	1.0	µg/L	1	4/12/2019 01:1
Acrylonitrile	U		0.34	1.0	μg/L	1	4/12/2019 01:1
Benzene	U		0.42	1.0	μg/L	1	4/12/2019 01:1
	U		0.42	1.0	μg/L	1	4/12/2019 01:1
Benzyl chloride Bromobenzene	U		0.20	1.0	μg/L μg/L	1	4/12/2019 01:1
Bromochloromethane	U		0.15	1.0	μg/L	1	4/12/2019 01:1

Client: BB&E, Inc.

Project: SSW Collis 2019 LTM Task 1

Sample ID: Trip Blank **Collection Date:** 4/9/2019

Date: 18-Apr-19

Work Order: 1904634

Lab ID: 1904634-17 **Matrix:** WATER

Analyses	Result Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed	
Bromodichloromethane	U	0.22	1.0	μg/L	1	4/12/2019 01:18	
Bromoform	U	0.56	1.0	μg/L	1	4/12/2019 01:18	
Bromomethane	U	0.29	1.0	μg/L	1	4/12/2019 01:18	
Carbon disulfide	U	0.39	1.0	μg/L	1	4/12/2019 01:18	
Carbon tetrachloride	U	0.32	1.0	μg/L	1	4/12/2019 01:18	
Chlorobenzene	U	0.21	1.0	μg/L	1	4/12/2019 01:18	
Chloroethane	U	0.68	1.0	μg/L	1	4/12/2019 01:18	
Chloroform	U	0.46	1.0	μg/L	1	4/12/2019 01:18	
Chloromethane	U	0.68	1.0	μg/L	1	4/12/2019 01:18	
cis-1,2-Dichloroethene	U	0.38	1.0	μg/L	1	4/12/2019 01:18	
cis-1,3-Dichloropropene	U	0.13	1.0	μg/L	1	4/12/2019 01:18	
Dibromochloromethane	U	0.20	1.0	μg/L	1	4/12/2019 01:18	
Dibromomethane	U	0.16	1.0	μg/L	1	4/12/2019 01:18	
Dichlorodifluoromethane	U	0.30	1.0	μg/L	1	4/12/2019 01:18	
Ethylbenzene	U	0.29	1.0	μg/L	1	4/12/2019 01:18	
Hexachlorobutadiene	U	0.15	1.0	μg/L	1	4/12/2019 01:18	
Hexachloroethane	U	0.15	1.0	μg/L	1	4/12/2019 01:18	
Hexane	U	0.18	1.0	μg/L	1	4/12/2019 01:18	
lodomethane	U	0.44	1.0	μg/L	1	4/12/2019 01:18	
Isopropylbenzene	U	0.17	1.0	μg/L	1	4/12/2019 01:18	
m,p-Xylene	U	0.53	2.0	μg/L	1	4/12/2019 01:18	
Methyl tert-butyl ether	U	0.21	1.0	μg/L	1	4/12/2019 01:18	
Methylene chloride	U	0.16	5.0	μg/L	1	4/12/2019 01:18	
Naphthalene	Ü	0.14	5.0	μg/L	1	4/12/2019 01:18	
n-Butylbenzene	0.090 J	0.090	1.0	µg/L	1	4/12/2019 01:18	
n-Propylbenzene	U	0.16	1.0	μ g /L	1	4/12/2019 01:18	
o-Xylene	U	0.19	1.0	μg/L μg/L	1	4/12/2019 01:18	
p-Isopropyltoluene	U	0.10	1.0	μg/L	1		
sec-Butylbenzene	U	0.11	1.0	μg/L	1	4/12/2019 01:18 4/12/2019 01:18	
Styrene	U	0.11	1.0	μg/L μg/L	1	4/12/2019 01:18	
tert-Butyl alcohol	Ü	2.2	20	μg/L	1		
tert-Butylbenzene	Ü	0.10	1.0	μg/L	1	4/12/2019 01:18	
Tetrachloroethene	Ü	0.10	1.0	μg/L	1	4/12/2019 01:18	
Tetrahydrofuran	U	0.49	1.0	μg/L μg/L	1	4/12/2019 01:18	
Toluene	U	0.49	1.0			4/12/2019 01:18	
trans-1,2-Dichloroethene	U	0.32	1.0	μg/L	1	4/12/2019 01:18	
trans-1,3-Dichloropropene	U	0.46	1.0	μg/L	1	4/12/2019 01:18	
trans-1,4-Dichloro-2-butene	U	0.15		μg/L	·	4/12/2019 01:18	
Trichloroethene	U		2.0	μg/L	1	4/12/2019 01:18	
Trichlorofluoromethane	U	0.33 0.24	1.0 1.0	μg/L μg/L	1 1	4/12/2019 01:18 4/12/2019 01:18	

Client:

BB&E, Inc.

Project:

SSW Collis 2019 LTM Task 1

Sample ID:

Trip Blank

Collection Date: 4/9/2019

Date: 18-Apr-19

Work Order: 1904634

Lab ID: 1904634-17

Matrix: WATER

Analyses	Result Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
Vinyl acetate	U	0.42	5.0	μg/L	1	4/12/2019 01:18
Vinyl chloride	U	0.53	1.0	μg/L	1	4/12/2019 01:18
Surr: 1,2-Dichloroethane-d4	98.5		75-120	%REC	1	4/12/2019 01:18
Surr: 4-Bromofluorobenzene	98.2		80-110	%REC	1	4/12/2019 01:18
Surr: Dibromofluoromethane	96.7		85-115	%REC	1	4/12/2019 01:18
Surr: Toluene-d8	99.8		85-110	%REC	1	4/12/2019 01:18

Client:

BB&E, Inc.

1904634

Work Order: **Project:**

SSW Collis 2019 LTM Task 1

Date: 18-Apr-19

Batch ID: R258414	Instrument ID GC10		Metho	d: RSK-1	75						
MBLK	Sample ID: MBLK-190412-R2584	14			ι	Jnits: µg/l	_	Analys	is Date: 4	/12/2019	02:22 PM
Client ID:	Run ID	: GC10	_190412A		Se	qNo: 560	5324	Prep Date:		DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Ethane	U	5.0	1						701 11 12		~~~
Ethene	U	5.0									
Methane	U	5.0									
LCS	Sample ID: LCS-190412-R258414	1			U	Jnits: µg/L	_	Analys	is Date: 4	/12/2019 (02:20 PM
Client ID:	Run ID	: GC10	_190412A			qNo: 560		Prep Date:		DF: 1	
Analyte	Result	DOL	CDK V-I	SPK Ref Value		0/ 050	Control Limit	RPD Ref Value		RPD Limit	
		PQL	. SPK Val	Value		%REC	Liiiit	value	%RPD	Cirint	Qual
Ethane	29.96	5.0	36.1		0	83	75-125	0			
Ethene	36.22	5.0	33.7		0	107	75-125	0			
Methane	15.83	5.0	19.2		0	82.4	75-125	0			
MS	Sample ID: 1904634-12E MS				U	Inits: µg/L		Analys	s Date: 4/	12/2019 (3:55 PM
Client ID: COL-GW-1	12 Run ID	: GC10	_190412A		Sec	qNo: 560 5	5350	Prep Date:		DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Ethane	69.18	5.0	36.1		0	192	70-130	0			S
Ethene	56.84	5.0			0	169	70-130	0			S
Methane	343.1	5.0		329.		72.3	70-130	0			EO
MSD	Sample ID: 1904634-12E MSD				U	nits: µg/L		Analysi	s Date: 4/	12/2019 0	3:57 PM
Client ID: COL-GW-1	Run ID	GC10	_190412A			No: 5605		Prep Date:		DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Ethane	51.95	5.0	36.1		0	144	70-130	69.18	28.4	30	S
Ethene	63.28	5.0	33.7		0	188	70-130	56.84	10.7	30	S
Methane	339.9	5.0	19.2	329.	2	55.9	70-130	343.1	0.922	30	SEO
The following sampl	les were analyzed in this batch:		904634-05E 904634-14E			34-12E 34-16E	190)4634-13E			

Client:

BB&E, Inc.

Work Order:

1904634

Project:

SSW Collis 2019 LTM Task 1

Batch ID: 134645	Instrument ID ICPMS3		Method	d: SW602	0A		(Dissolve	2)			
MBLK	Sample ID: MBLK-134645-13464	15			Un	nits: mg/	L	Analys	s Date: 4/	16/2019 0	4:08 PN
Client ID:	Run II	D: ICPMS	3_190416A		Seq	No: 560 9	9861	Prep Date: 4/16	/2019	DF: 1	
Analyta	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Analyte			OF IC Val			MICLO			701.0		
Iron	U	0.080									
Manganese	U	0.0050									
LCS	Sample ID: LCS-134645-134645				Un	nits: mg/	L	Analys	is Date: 4/	16/2019 0	4:09 PN
Client ID:	Run II	D: ICPMS	3_190416A		Seq	No: 560	9862	Prep Date: 4/16	/2019	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Iron	9.593	0.080	10		0	95.9	80-120	0			
Manganese	0.09324	0.0050	0.1		0	93.2	80-120	0			
MS	Sample ID: 1904634-12BMS				Ur	nits: mg/	L	Analys	is Date: 4/	16/2019 0	4:17 PN
Client ID: COL-GW-	12 Run II	D: ICPMS	3_190416A		Seq	No: 560	9998	Prep Date: 4/16	3/2019	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Iron	10.69	0.080	10	0.10	15	106	75-125	0			
Manganese	0.3833	0.0050	0.1	0.286	52	97.1	75-125	0			
MSD	Sample ID: 1904634-12BMSD				Ur	nits: mg/	L	Analys	is Date: 4/	16/2019 0	4:19 PN
Client ID: COL-GW-	-12 Run I	D: ICPMS	3_190416A		Seq	No: 560	9999	Prep Date: 4/16	6/2019	DF: 1	
			0.514.14.1	SPK Ref Value		** DE0	Control Limit	RPD Ref Value	0/ DDD	RPD Limit	Qual
Analyte	Result	PQL	SPK Val	value		%REC	Limit	Value	%RPD		Qual
Iron	10.63	0.080	10	0.10	15	105	75-125		0.625		
Manganese	0.3836	0.0050	0.1	0.28	62	97.5	75-125	0.3833	0.0892	20	
The following sam	ples were analyzed in this batch:		904634-05B 904634-14B			34-12B 34-16B	19	04634-13B			

Client:

BB&E, Inc.

Work Order:

1904634

Project:

SSW Collis 2019 LTM Task 1

Batch ID: R258206	Instrument ID VMS9		Metho	d: SW82	60B						
MBLK	Sample ID: VBLKW2-190410-R2	58206				Jnits: µg/I	12	Analys	sis Date: 4	/10/2019 (1:35 PM
Client ID:	Run IE): VMS9_	_190410A			eqNo: 560		Prep Date:		DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
1,4-Dioxane	U	1.0									
Surr: Toluene-d8	9.59	0	10		0	95.9	74-124	0			
LCS	Sample ID: VLCS2-190410-R258	206			ı	Jnits: µg/l	_	Analys	is Date: 4	10/2019 1	2:50 PM
Client ID:	Run ID	: VMS9_	190410A			qNo: 560		Prep Date:		DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
1,4-Dioxane	51.65	1.0	40		0	129	70-130	0			
Surr: Toluene-d8	8.11	0	10		0	81.1	74-124	0			
MS	Sample ID: 1904634-12A MS				ι	Jnits: µg/L	_	Analys	is Date: 4/	10/2019 0	4:52 PM
Client ID: COL-GW-1	12 Run ID	: VMS9_	190410A		Se	qNo: 560	1274	Prep Date:		DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
1,4-Dioxane	53.62	1.0	40		0	134	70-130	0			S
Surr: Toluene-d8	8.87	0	10		0	88.7	74-124	0			
MSD	Sample ID: 1904634-12A MSD				ι	Jnits: µg/L		Analys	is Date: 4/	10/2019 0	5:07 PM
Client ID: COL-GW-1	2 Run ID	: VMS9_	190410A		Se	qNo: 560 1	1275	Prep Date:		DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
1,4-Dioxane	53.3	1.0	40		0	133	70-130	53.62	0.599	30	S
Surr: Toluene-d8	8.87	0	10		0	88.7	74-124	8.87	0	30	-
The following sampl	les were analyzed in this batch:		904634-04A 904634-13A			34-05A 34-14A		04634-12A 04634-16A			

Client:

BB&E, Inc.

Work Order:

1904634

Project:

Client ID: Run ID: VMS10 1904118 SeyNo: 1604221 Prep Date: DF: 1 Analyte Result Pro	Batch ID: R258364	Instrument ID VMS10		Metho	d: SW82 6	60C					
Nanalyle	MBLK Sam	ple ID: VBLKW2-190411-R2	58364			Units: µg/l		Analy	sis Date: 4	/12/2019	12:45 PN
Result PQL SPK Val Value %REC Limit Value %RPD Limit Question Ques	Client ID:	Run II	D: VMS10	_190411B		SeqNo: 5604	4221	Prep Date:		DF: 1	
Result PQL SPK Val Value %REC Limit Value %RPD Limit Question Ques				_	SDK Dof		Control	DDD Bef		RPD	
1,1-Trichloroethane	Analyte	Result	PQL	SPK Val		%REC			%RPD		Qual
1,1-1-Trichloroethane	1,1,1,2-Tetrachloroethane	U	1.0								
1,1,2,2-Tetrachioroethane	1,1,1-Trichloroethane	U	1.0								
1,1,2-Trichloroethane		U	1.0								
1,1-2-Trichlorotrifluoroethane		U	1.0								
1,1-Dichloroethane		ne U									
1,1-Dichloropthene											
1,1-Dichloropropene U 1.0 1,2,3-Trichlorobenzene U 1.0 1,2,3-Trichlorobenzene U 1.0 1,2,4-Trichlorobenzene U 1.0 1,2,4-Trichlorobenzene U 1.0 1,2,4-Trimethylbenzene U 1.0 1,2-Dibromo-3-chloropropane U 1.0 1,2-Dibromo-3-chloropropane U 1.0 1,2-Dibromo-3-chloropropane U 1.0 1,2-Dichlorobenzene U 1.0 1,2-Dichlorobenzene U 1.0 1,2-Dichlorobenzene U 1.0 1,2-Dichloropropane U 1.0 1,3-Dichloropropane U 1.0 1,3-5-Trichlorobenzene U 1.0 1,3-5-Trimethylbenzene U 1.0 1,3-5-Trimethylbenzene U 1.0 1,3-Dichlorobenzene U 1.0 1,3-Dichlorobenzene U 1.0 1,4-Dichlorobenzene U 1.0 1,4-Dichloropenae U 1.0 1,4-Dichlorobenzene U 1.		U									
1.2.3-Trichlorobenzene U 1.0 1.2.3-Trichloropropane U 1.0 1.2.4-Trinchloropropane U 1.0 1.2.4-Trinchloropropane U 1.0 1.2.4-Trinchloropenzene U 1.0 1.2.1-Dibromo-3-chloropropane U 1.0 1.2-Dibromo-3-chloropropane U 1.0 1.2-Dibromoethane U 1.0 1.2-Dichlorobenzene U 1.0 1.2-Dichloropenzene U 1.0 1.2-Dichloropenzene U 1.0 1.3.5-Trinchlorobenzene U 1.0 1.3.5-Trinchlorobenzene U 1.0 1.3.5-Trinchlorobenzene U 1.0 1.3.5-Trinchlorobenzene U 1.0 1.3-Dichloropropane U 1.0 1.0 1.3-Dichloropropane U 1.0 1.0 1.0-Dichloropropane U 1.0 1.0 1.0-Dichloropropane U 1.0 1.0 1.0 1.0-Dichloropropane U 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	-	U									
1,2,3-Trichloropropane U 1,0 1,2,4-Trinelhylbenzene U 1,0 1,2,4-Trinelhylbenzene U 1,0 1,2-Dibromoethane U 1,0 1,2-Dibromoethane U 1,0 1,2-Dichloropenzene U 1,0 1,2-Dichloropropane U 1,0 1,2-Dichloropropane U 1,0 1,3,5-Trinelhylbenzene U 1,0 1,3-Dichloropropane U 1,0 1,3-Dichloropropane U 1,0 1,3-Dichloropropane U 1,0 1,4-Dichloropropane U 1,0 2,2-Dichloropropane U 1,0 2,2-Dichloropropane U 1,0 2-Chlorotolure U 1,0 2-Chlorotolure U 1,0 2-Chlorotolure U 1,0 2-Hexanone U 1,0 2-Hexhylriaphthalene 0,41 5,0 2-Methylriaphthalene U 1,0 4-Chlorotolurene U 1,0 4-Chlorotolurene U											
1,2,4-Trichlorobenzene											
1,2,4-Trimethylbenzene U 1,0 1,2-Dibromo-3-chloropropane U 1,0 1,2-Dibromoethane U 1,0 1,2-Dichlorobenzene U 1,0 1,2-Dichloropropane U 1,0 1,2-Dichloropropane U 1,0 1,3,5-Trinchlorobenzene U 1,0 1,3-Dichloropropane U 1,0 1,3-Dichloropropane U 1,0 1,3-Dichloropropane U 1,0 1,4-Dichloropropane U 1,0 1,4-Dichloropropane U 1,0 2,2-Dichloropropane U 1,0 2,2-Dichloropropane U 1,0 2-Chlorotoluene U 1,0 2-Chlorotoluene U 1,0 2-Chlorotoluene U 1,0 2-Chexanone U 1,0 2-Chexanone U 1,0 4-Roporpylloluene U 1,0 4-Chlorotoluene U 1,0 4-Ropore U 1,0 Acrolein U 1,0 <tr< td=""><td>20.00</td><td>U</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>	20.00	U									
1,2-Dibromo-3-chloropropane U 1,0 1,2-Dibromoethane U 1,0 1,2-Dichlorobenzene U 1,0 1,2-Dichloropropane U 1,0 1,3-5-Trichlorobenzene U 1,0 1,3-5-Trichlorobenzene U 1,0 1,3-Dichlorobenzene U 1,0 1,3-Dichloropropane U 1,0 1,4-Dichlorobenzene U 1,0 1,4-Dichloropropane U 1,0 2-Politoropropane U <											
1,2-Dibromoethane											
1,2-Dichlorobenzene U 1.0 1,2-Dichlorogropane U 1.0 1,2-Dichloropropane U 1.0 1,3-Frinchlorobenzene U 1.0 1,3-Dichloropropane U 1.0 1,3-Dichloropropane U 1.0 1,3-Dichloropropane U 1.0 1,4-Dichloropropane U 1.0 2,2-Dichloropropane U 1.0 2-Eutanone U 5.0 2-Chlorotolywinyl ether U 1.0 2-Chlorotoluene U 1.0 2-Hexanone U 1.0 4-Chlorotoluene U 1.0 4											
1,2-Dichloroethane U 1.0 1,2-Dichloropropane U 1.0 1,3,5-Trichlorobenzene U 1.0 1,3-Errichlorobenzene U 1.0 1,3-Dichloropropane U 1.0 1,3-Dichloropropane U 1.0 1,3-Dichloropropane U 1.0 1,4-Dichloropropane U 1.0 1,4-Dichloropropane U 1.0 2,2-Dichloropropane U 1.0 2,2-Dichloropropane U 1.0 2,2-Dichloropropane U 1.0 2-Eutanone U 5.0 2-Chloroethyl vinyl ether U 1.0 2-Chloroethyl vinyl ether U 1.0 2-Chlorotoluene U 1.0 2-Hexanone U 5.0 2-Methylnaphthalene 0.41 5.0 2-Methylnaphthalene U 1.0 4-Isopropyltoluene U 1.0 4-Roctolein U 1.0 4-Roctol		U									
1,2-Dichloropropane	,										
1,3,5-Trichlorobenzene 1,3,5-Trimethylbenzene 1,3-Dichlorobenzene 1,3-Dichloropropane 1,4-Dichloropropane 1,4-Dichloropropane 1,4-Dichloropropane 1,5-Dichloropropane	1. •										
1,3,5-Trimethylbenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichloropropane 1,4-Dichloropropane 1,4-Dichloropropane 1,5-Dichloropropane 1,5	NO THE COURT OF THE PERSON NAMED IN COURT OF										
1,3-Dichlorobenzene U 1.0 1,3-Dichloropropane U 1.0 1,4-Dichloropropane U 1.0 2,2-Dichloropropane U 1.0 2,2-Dichloropropane U 1.0 2-Butanone U 5.0 2-Chlorothyl vinyl ether U 1.0 2-Hexanone U 5.0 2-Hexanone U 5.0 2-Hexanone U 1.0 4-Hexanone U 1.0 4-Hothorotoluene U 1.0 4-Sopropyltoluene U 1.0 4-Rotoloromethane U 1.0 4-Rotoloride U 1.0											
1,3-Dichloropropane U 1.0 1,4-Dichloropropane U 1.0 2,2-Dichloropropane U 1.0 2,2-Chloroethyl vinyl ether U 1.0 2,2-Hexanone U 5.0 2,2-Hexanone U 5.0 2,2-Hexanone U 5.0 2,3-Hexanone U 1.0 3,4-Chlorotoluene U 1.0 4-Sopropyltoluene U 1.0 4-Sopropyltoluene U 1.0 4-Methyl-2-pentanone U 1.0 4-Methyl-2-pentanone U 1.0 4-Cetone											
1,4-Dichlorobenzene U 1.0 2,2-Dichloropropane U 1.0 2-Butanone U 5.0 2-Chloroethyl vinyl ether U 1.0 2-Chlorotoluene U 5.0 2-Hexanone U 5.0 2-Hexanone U 5.0 2-Hexanone U 5.0 3-Hexanone U 1.0 4-Chlorotoluene U 1.0 4-Isopropyltoluene U 1.0 4-Isopropyltoluene U 1.0 4-Actone U 1.0 4-Actone U 1.0 Acrolein U 1.0 Acrolein U 1.0 Acrolein U 1.0 Benzene U 1.0											
2,2-Dichloropropane U 1.0 2-Butanone U 5.0 2-Chloroethyl vinyl ether U 1.0 2-Chlorotoluene U 5.0 2-Methylnaphthalene 0.41 5.0 2-Methylnaphthalene U 1.0 4-Chlorotoluene U 1.0 4-Methyl-2-pentanone U 1.0 4-Methyl-											
2-Butanone U 5.0 2-Chloroethyl vinyl ether U 1.0 2-Chlorotoluene U 1.0 2-Hexanone U 5.0 2-Methylnaphthalene 0.41 5.0 2-Methylnaphthalene U 1.0 4-Chlorotoluene U 1.0 4-Hopropyltoluene U 1.0 4-Methyl-2-pentanone U 1.0 Acetone U 10 Acrolein U 1.0 Acrylonitrile U 1.0 Benzene U 1.0 Benzene U 1.0 Benzene U 1.0 Benzonobloromethane U 1.0 Bromodichloromethane U 1.0 Bromodichloromethane U 1.0 Bromodichloromethane											
2-Chloroethyl vinyl ether U 1.0 2-Chlorotoluene U 5.0 2-Hexanone U 5.0 2-Methylnaphthalene 0.41 5.0 4-Chlorotoluene U 1.0 4-Chlorotoluene U 1.0 4-Isopropyltoluene U 1.0 4-Methyl-2-pentanone U 1.0 Acetone U 10 Acrolein U 1.0 Acrylonitrile U 1.0 Benzene U 1.0 Benzene U 1.0 Benzonee U 1.0 Benzoneere U 1.0 Benzoneere U 1.0 Benzoneere U 1.0 Benzoneeree U 1.0 Benzoneereereereereereereereereereereereereer											
2-Chlorotoluene U 1.0 2-Hexanone U 5.0 2-Methylnaphthalene 0.41 5.0 3-Chlorotoluene U 1.0 4-Chlorotoluene U 1.0 4-Methyl-2-pentanone U 1.0 4-Methyl-2-pentanone U 1.0 4-Actone U 1.0 4-Acrolein U 1.0 4-Acrylonitrile U 1.0 8-Benzene U 1.0											
2-Hexanone U 5.0 2-Methylnaphthalene 0.41 5.0 3-Chlorotoluene U 1.0 4-Chlorotoluene U 1.0 4-Methyl-2-pentanone U 1.0 Acetone U 10 Acrolein U 1.0 Acrylonitrile U 1.0 Benzene U 1.0											
2-Methylnaphthalene											
4-Chlorotoluene U 1.0 4-Isopropyltoluene U 1.0 4-Methyl-2-pentanone U 1.0 Acetone U 1.0 Acrolein U 1.0 Acrylonitrile U 1.0 Benzene U 1.0 Benzyl chloride U 1.0 Bromobenzene U 1.0 Bromodichloromethane U 1.0 Bromodichloromethane U 1.0											J
4-Isopropyltoluene U 1.0 4-Methyl-2-pentanone U 1.0 Acetone U 10 Acrolein U 1.0 Acrylonitrile U 1.0 Benzene U 1.0 Benzyl chloride U 1.0 Bromobenzene U 1.0 Bromochloromethane U 1.0 Bromodichloromethane U 1.0 Bromodichloromethane U 1.0											
4-Methyl-2-pentanone U 1.0 Acetone U 10 Acrolein U 1.0 Acrylonitrile U 1.0 Benzene U 1.0 Bromobenzene U 1.0 Bromochloromethane U 1.0 Bromodichloromethane U 1.0											
Acetone U 10 Acrolein U 1.0 Acrylonitrile U 1.0 Benzene U 1.0 Benzyl chloride U 1.0 Bromobenzene U 1.0 Bromochloromethane U 1.0 Bromodichloromethane U 1.0											
Acrolein U 1.0 Acrylonitrile U 1.0 Benzene U 1.0 Benzyl chloride U 1.0 Bromobenzene U 1.0 Bromochloromethane U 1.0 Bromodichloromethane U 1.0											
Acrylonitrile U 1.0 Benzene U 1.0 Benzyl chloride U 1.0 Bromobenzene U 1.0 Bromochloromethane U 1.0 Bromodichloromethane U 1.0											
Description											
Benzyl chloride U 1.0 Bromobenzene U 1.0 Bromochloromethane U 1.0 Bromodichloromethane U 1.0											
Bromobenzene U 1.0 Bromochloromethane U 1.0 Bromodichloromethane U 1.0											
Bromochloromethane U 1.0 Bromodichloromethane U 1.0											
Bromodichloromethane U 1.0											
	Bromoform										
	Bromomethane Carbon disulfide										

Client:

BB&E, Inc.

Work Order:

1904634

Project:

Batch ID: R258364	Instrument ID VMS10		Method:	SW8260C				
Carbon tetrachloride	U	1.0						
Chlorobenzene	U	1.0						
Chloroethane	U	1.0						
Chloroform	U	1.0						
Chloromethane	U	1.0						
cis-1,2-Dichloroethene	U	1.0						
cis-1,3-Dichloropropene	U	1.0						
Dibromochloromethane	U	1.0						
Dibromomethane	U	1.0						
Dichlorodifluoromethane	U	1.0						
Ethylbenzene	U	1.0						
Hexachlorobutadiene	0.22	1.0						J
Hexachloroethane	U	1.0						
Hexane	U	1.0						
odomethane	U	1.0						
sopropylbenzene	U	1.0						
n,p-Xylene	U	2.0						
Methyl tert-butyl ether	U	1.0						
Methylene chloride	U	5.0						
Naphthalene	U	5.0						
-Butylbenzene	0.19	1.0						J
-Propylbenzene	U	1.0						
o-Xylene	U	1.0						
o-Isopropyltoluene	U	1.0						
ec-Butylbenzene	U	1.0						
Styrene	U	1.0						
ert-Butyl alcohol	U	20						
ert-Butylbenzene	U	1.0						
etrachloroethene	U	1.0						
etrahydrofuran	U	1.0						
oluene	U	1.0						
rans-1,2-Dichloroethene	U	1.0						
rans-1,3-Dichloropropene	U	1.0						
rans-1,4-Dichloro-2-butene	U	2.0						
richloroethene	U	1.0						
richlorofluoromethane	U	1.0						
inyl acetate	U	5.0						
/inyl chloride	U	1.0						
Surr: 1,2-Dichloroethane-	-d4 19.85	0	20	0	99.2	75-120	0	
Surr: 4-Bromofluorobenze	ene 19.78	0	20	0	98.9	80-110	0	
Surr: Dibromofluorometha	ane 19.63	0	20	0	98.2	85-115	0	
Surr: Toluene-d8	19.8	0	20	0	99	85-110	0	

Client:

BB&E, Inc.

Work Order:

1904634

Project:

Batch ID: R258364	Instrument ID VMS10		Metho	d: SW82 6	50C						
LCS Sa	mple ID: VLCSW2-190411-R2	58364			ι	Jnits: µg/L		Analys	is Date: 4	/11/2019	11:55 PN
Client ID:	Run ID	: VMS10	_190411B		Se	qNo: 560	1200	Prep Date:		DF: 1	
				SPK Ref			Control	RPD Ref		RPD	
Analyte	Result	PQL	SPK Val	Value		%REC	Limit	Value	%RPD	Limit	Qual
1,1,1,2-Tetrachloroethane	19.99	1.0	20		0	100	73-114	0			
1,1,1-Trichloroethane	21.5	1.0	20		0	108	75-130	0			
1,1,2,2-Tetrachloroethane	20.31	1.0	20		0	102	75-130	0			
1,1,2-Trichloroethane	19.59	1.0	20		0	98	75-125	0			
1,1-Dichloroethane	20.58	1.0	20		0	103	68-142	0			
1,1-Dichloroethene	23.16	1.0	20		0	116	70-145	0			
1,1-Dichloropropene	19.14	1.0	20		0	95.7	75-135	0			
1,2,3-Trichlorobenzene	18.49	1.0	20		0	92.4	70-140	0			
1,2,3-Trichloropropane	19.33	1.0	20		0	96.6	75-125	0			
1,2,4-Trichlorobenzene	19.97	1.0	20		0	99.8	70-135	0			
1,2,4-Trimethylbenzene	19.08	1.0	20		0	95.4	75-130	0			
1,2-Dibromo-3-chloroprop	pane 19.72	1.0	20		0	98.6	60-130	0			
1.2-Dibromoethane	25.48	1.0	20		0	127	67-155	0			
1,2-Dichlorobenzene	19.9	1.0	20		0	99.5	70-130	0			
1,2-Dichloroethane	20.48	1.0	20		0	102	78-125	0			
1,2-Dichloropropane	19.62	1.0	20		0	98.1	75-125	0			
1,3,5-Trimethylbenzene	20.11	1.0	20		0	101	75-130	0			
1,3-Dichlorobenzene	19.67	1.0	20		0	98.4	75-130	0			
1,3-Dichloropropane	19.46	1.0	20		0	97.3	75-125	0			
1,4-Dichlorobenzene	20.1	1.0	20		0	100	75-130	0			
2,2-Dichloropropane	18.15	1.0	20		0	90.8	43-150	0			
2-Butanone	19.8	5.0	20		0	99	55-150	0			
2-Chlorotoluene	21	1.0	20		0	105	76-117	0			
2-Hexanone	19.57	5.0	20		0	97.8	60-135	0			
4-Chlorotoluene	19.61	1.0	20		0	98	80-125	0			
4-Isopropyltoluene	20.01	1.0	20		0	100	61-164	0			
4-Methyl-2-pentanone	29.09	1.0	20		0	145	77-178	0			
Acetone	19.34	10	20		0	96.7	60-160	0			
Acrylonitrile	19.97	1.0	20		0	99.8	60-140	0			
Benzene	20.06	1.0	20		0	100	85-125	0			
Bromobenzene	19.7	1.0	20		0	98.5	80-125	0			
Bromochloromethane	22.01	1.0	20		0	110	72-141	0			
Bromodichloromethane	19.54	1.0	20		0	97.7	75-125				
Bromoform	17.82	1.0	20		0	89.1	60-125				
Bromomethane	37.29	1.0	20		0	186	30-185				S
Carbon disulfide	21.38	1.0	20		0	107	60-165				-
	20.28	1.0	20		0	101	65-140				
Carbon tetrachloride	19.76	1.0	20		0	98.8	80-120				
Chlorosthana	21.19	1.0	20		0	106	31-172				
Chloroethane Chloroform	19.75	1.0	20		0	98.8	80-130				
	17.71	1.0	20		0	88.6	46-148				
Chloromethane	20.5	1.0	20		U	00.0	40-140				

Client: BB&E, Inc. Work Order:

1904634

Project:

Batch ID: R258364	Instrument ID VMS10		Method:	SW8260C				
cis-1,3-Dichloropropene	18.95	1.0	20	0	94.8	70-130	0	
Dibromochloromethane	18.13	1.0	20	0	90.6	60-115	0	
Dibromomethane	20.36	1.0	20	0	102	79-126	0	
Dichlorodifluoromethane	16.99	1.0	20	0	85	20-120	0	
Ethylbenzene	19.74	1.0	20	0	98.7	76-123	0	
Hexachlorobutadiene	22.72	1.0	20	0	114	70-155	0	
Hexachloroethane	17.58	1.0	20	0	87.9	50-124	0	
lodomethane	33.01	1.0	20	0	165	60-160	0	S
Isopropylbenzene	20.42	1.0	20	0	102	80-127	0	
m,p-Xylene	39.5	2.0	40	0	98.8	75-130	0	
Methyl tert-butyl ether	21.52	1.0	20	0	108	68-129	0	
Methylene chloride	19.26	5.0	20	0	96.3	72-125	0	
Naphthalene	19.47	5.0	20	0	97.4	55-160	0	
n-Butylbenzene	20.47	1.0	20	0	102	75-145	0	
n-Propylbenzene	19.44	1.0	20	0	97.2	76-116	0	
o-Xylene	19.73	1.0	20	0	98.6	76-127	0	
p-Isopropyltoluene	20.01	1.0	20	0	100	61-164	0	
sec-Butylbenzene	20.14	1.0	20	0	101	80-134	0	
Styrene	20.09	1.0	20	0	100	83-137	0	
tert-Butyl alcohol	96.72	20	100	0	96.7	70-130	0	
tert-Butylbenzene	19.6	1.0	20	0	98	70-130	0	
Tetrachloroethene	20.9	1.0	20	0	104	68-166	0	
Tetrahydrofuran	18.58	1.0	20	0	92.9	54-139	0	
Toluene	19.52	1.0	20	0	97.6	76-125	0	
rans-1,2-Dichloroethene	20.93	1.0	20	0	105	80-140	0	
rans-1,3-Dichloropropene	18.33	1.0	20	0	91.6	56-132	0	
rans-1,4-Dichloro-2-butene	14.76	2.0	20	0	73.8	46-118	0	
Trichloroethene	20.86	1.0	20	0	104	84-130	0	
Trichlorofluoromethane	21.6	1.0	20	0	108	60-140	0	
Vinyl chloride	19.47	1.0	20	0	97.4	50-136	0	
Surr: 1,2-Dichloroethane-c		0	20	0	100	75-120	0	
Surr: 4-Bromofluorobenze		0	20	0	97.3	80-110	0	
Surr: Dibromofluorometha	ne 19.94	0	20	0	99.7	85-115	0	
Surr: Toluene-d8	19.07	0	20	0	95.4	85-110	0	

Client:

BB&E, Inc.

Work Order:

1904634

Project:

Batch ID: R258364	Instrument ID VM	S10		Metho	d: SW8260 C	;					
MS Sa	ample ID: 1904634-12	2A MS				Units: µg/l	_ ,	Analys	sis Date: 4	/12/2019	06:50 AN
Client ID: COL-GW-12		Run ID	: VMS10	_190411B	s	eqNo: 560	4219	Prep Date:		DF: 1	
					SPK Ref		Control	RPD Ref		RPD	
Analyte		Result	PQL	SPK Val	Value	%REC	Limit	Value	%RPD	Limit	Qual
1,1,1,2-Tetrachloroethan	е	19.88	1.0	20	0	99.4	73-114	()		
1,1,1-Trichloroethane		22.65	1.0	20	0	113	75-130	(
1,1,2,2-Tetrachloroethan	е	19.13	1.0	20	0	95.6	75-130	(
1,1,2-Trichloroethane		20.02	1.0	20	0.6	97.1	75-125	(
1,1-Dichloroethane		21.7	1.0	20	0	108	68-142	()		
1,1-Dichloroethene		27.63	1.0	20	2.61	125	70-145	()		
1,1-Dichloropropene		19.75	1.0	20	0	98.8	75-135)		
1,2,3-Trichlorobenzene		17.31	1.0	20	, 0.13	85.9	70-140	()		
1,2,3-Trichloropropane		19.01	1.0	20	0	95	75-125	()		
1,2,4-Trichlorobenzene		18.79	1.0	20	0.13	93.3	70-135	()		
1,2,4-Trimethylbenzene		19.7	1.0	20	0	98.5	75-130	()		
1,2-Dibromo-3-chloropro	pane	18.61	1.0	20	0	93	60-130	()		
1,2-Dibromoethane		26.06	1.0	20	0	130	67-155	()		
1,2-Dichlorobenzene		19.33	1.0	20	0	96.6	70-130	()		
1,2-Dichloroethane		20.32	1.0	20	0	102	78-125	()		
1,2-Dichloropropane		20.04	1.0	20	0	100	75-125	()		
1,3,5-Trimethylbenzene		20.88	1.0	20	0	104	75-130	()		
1,3-Dichlorobenzene		19.12	1.0	20	0	95.6	75-130	()		
1,3-Dichloropropane		20.12	1.0	20	0	101	75-125	()		
1,4-Dichlorobenzene		19.18	1.0	20	0	95.9	75-130	()		
2,2-Dichloropropane		16.33	1.0	20	0	81.6	43-150	()		
2-Butanone		20.34	5.0	20	0	102	55-150	()		
2-Chlorotoluene		21.64	1.0	20	0	108	76-117	()		
2-Hexanone		20.2	5.0	20	0	101	60-135	()		
4-Chlorotoluene		20.25	1.0	20	0	101	80-125	()		
4-Isopropyltoluene		19.78	1.0	20	0	98.9	61-164	()		
4-Methyl-2-pentanone		30.24	1.0	20	0	151	77-178	()		
Acetone		23.96	10	20	9.4	72.8	60-160	()		
Acrylonitrile		19.55	1.0	20	0	97.8	60-140	()		
Benzene		20.56	1.0	20	0.12	102	85-125	()		
Bromobenzene		20.13	1.0	20	0	101	80-125	()		
Bromochloromethane		21.6	1.0	20	0	108	72-141	()		
Bromodichloromethane		19.74	1.0	20	0	98.7	75-125)		
Bromoform		17.18	1.0	20	0	85.9	60-125)		
Bromomethane		25.66	1.0	20	0	128	30-185)		
Carbon disulfide		22.38	1.0	20	0	112	60-165)		
Carbon tetrachloride		21.63	1.0	20	0	108	65-140)		
Chlorobenzene		20.32	1.0	20	0	102	80-120)		
Chloroethane		23.66	1.0	20	0		31-172)		
Chloroform		20.34	1.0	20	0	102	80-130)		
Chloromethane		18.69	1.0	20	0.35		46-148)		
cis-1,2-Dichloroethene		301.9	1.0	20	263.6	191	75-134)		SEO

Client: Work Order: BB&E, Inc. 1904634

Project:

Batch ID: R258364	Instrument ID VMS10		Method:	SW8260C				
cis-1,3-Dichloropropene	18.35	1.0	20	0	91.8	70-130	0	
Dibromochloromethane	18.41	1.0	20	0	92	60-115	0	
Dibromomethane	20.02	1.0	20	0	100	79-126	0	
Dichlorodifluoromethane	18.05	1.0	20	0	90.2	20-120	0	
Ethylbenzene	20.7	1.0	20	0	104	76-123	0	
Hexachlorobutadiene	20.39	1.0	20	0	102	70-155	0	
Hexachloroethane	16.62	1.0	20	0	83.1	50-124	0	
lodomethane	27.36	1.0	20	0	137	60-160	0	
Isopropylbenzene	21.35	1.0	20	0	107	80-127	0	
m,p-Xylene	41.63	2.0	40	0.1	104	75-130	0	
Methyl tert-butyl ether	22.14	1.0	20	0	111	68-129	0	
Methylene chloride	20.13	5.0	20	0	101	72-125	0	
Naphthalene	18.77	5.0	20	0	93.8	55-160	0	
n-Butylbenzene	19.69	1.0	20 '	0	98.4	75-145	0	
n-Propylbenzene	20.37	1.0	20	0	102	76-116	0	
o-Xylene	20.59	1.0	20	0	103	76-127	0	
o-Isopropyltoluene	19.78	1.0	20	0	98.9	61-164	0	
sec-Butylbenzene	21.32	1.0	20	0	107	80-134	0	
Styrene	20.42	1.0	20	0	102	83-137	0	
ert-Butyl alcohol	106.1	20	100	0	106	70-130	0	
ert-Butylbenzene	21.08	1.0	20	0	105	70-130	0	
Tetrachloroethene	21.77	1.0	20	0	109	68-166	0	
Tetrahydrofuran	18.97	1.0	20	0	94.8	54-139	0	
Toluene	20.23	1.0	20	0	101	76-125	0	
rans-1,2-Dichloroethene	38.58	1.0	20	15.94	113	80-140	0	
rans-1,3-Dichloropropene	18.03	1.0	20	0	90.2	56-132	0	
rans-1,4-Dichloro-2-butene	14.55	2.0	20	0	72.8	46-118	0	
richloroethene	252.6	1.0	20	249.4	16.1	84-130	0	SEC
richlorofluoromethane	23.72	1.0	20	0	119	60-140	0	
/inyl chloride	72.52	1.0	20	47.23	126	50-136	0	
Surr: 1,2-Dichloroethane-c	14 20.29	0	20	0	101	75-120	0	
Surr: 4-Bromofluorobenzei	ne 19.89	0	20	0	99.4	80-110	0	
Surr: Dibromofluoromethal	ne 20.13	0	20	0	101	85-115	0	
Surr: Toluene-d8	19.28	0	20	0	96.4	85-110	0	

Client:

BB&E, Inc.

Work Order:

1904634

Project:

	Instrument ID VMS10		Wictio	d: SW8260C						
MSD Sar	mple ID: 1904634-12A MSD				Units: µg/l		Analysi	s Date: 4/	12/2019 0	7:07 AI
Client ID: COL-GW-12	Run I	D: VMS10	_190411B	S	eqNo: 560	4220	Prep Date:		DF: 1	
				SPK Ref		Control	RPD Ref		RPD	
Analyte	Result	PQL	SPK Val	Value	%REC	Limit	Value	%RPD	Limit	Qual
I,1,1,2-Tetrachloroethane	19.68	1.0	20	0	98.4	73-114	19.88	1.01	30	
1,1,1-Trichloroethane	22.03	1.0	20	0	110	75-130	22.65	2.78	30	
1,1,2,2-Tetrachloroethane	19.73	1.0	20	0	98.6	75-130	19.13	3.09	30	
1,1,2-Trichloroethane	19.7	1.0	20	0.6	95.5	75-125	20.02	1.61	30	
1,1-Dichloroethane	20.73	1.0	20	0	104	68-142	21.7	4.57	30	
1,1-Dichloroethene	26.88	1.0	20	2.61	121	70-145	27.63	2.75	30	
1,1-Dichloropropene	19.44	1.0	20	0	97.2	75-135	19.75	1.58	30	
1,2,3-Trichlorobenzene	17.31	1.0	20	0.13	85.9	70-140	17.31	0	30	
1,2,3-Trichloropropane	19.37	1.0	20	0	96.8	75-125	19.01	1.88	30	
1,2,4-Trichlorobenzene	18.52	1.0	20	0.13	92	70-135	18.79	1.45	30	
1,2,4-Trimethylbenzene	18.83	1.0	20	0	94.2	75-130	19.7	4.52	30	
1,2-Dibromo-3-chloroprop	ane 18.8	1.0	20	0	94	60-130	18.61	1.02	30	
1,2-Dibromoethane	25.64	1.0	20	0	128	67-155	26.06	1.62	30	
1,2-Dichlorobenzene	19.76	1.0	20	0	98.8	70-130	19.33	2.2	30	
,2-Dichloroethane	20.07	1.0	20	0	100	78-125	20.32	1.24	30	
1,2-Dichloropropane	19.76	1.0	20	0	98.8	75-125	20.04	1.41	30	
1,3,5-Trimethylbenzene	20.16	1.0	20	0	101	75-130	20.88	3.51	30	
1,3-Dichlorobenzene	19.01	1.0	20	0	95	75-130	19.12	0.577	30	
1,3-Dichloropropane	19.73	1.0	20	0	98.6	75-125	20.12	1.96	30	
1,4-Dichlorobenzene	19.72	1.0	20	0	98.6	75-130	19.18	2.78	30	
2,2-Dichloropropane	15.17	1.0	20	0	75.8	43-150	16.33	7.37	30	
2-Butanone	19.37	5.0	20	0	96.8	55-150	20.34	4.89	30	
2-Chlorotoluene	20.98	1.0	20	0	105	76-117	21.64	3.1	30	
2-Hexanone	19.27	5.0	20	0	96.4	60-135	20.2	4.71	30	
4-Chlorotoluene	19.41	1.0	20	0	97	80-125	20.25	4.24	30	
4-Isopropyltoluene	19.27	1.0	20	0	96.4	61-164	19.78	2.61	30	
4-Methyl-2-pentanone	29.7	1.0	20	0	148	77-178	30.24	1.8	30	
Acetone	23.28	10	20	9.4	69.4	60-160	23.96	2.88	30	
Acrylonitrile	19.14	1.0	20	0.4	95.7	60-140	19.55	2.12	30	
	20.11	1.0	20	0.12	100	85-125	20.56	2.21	30	
Benzene Bromobenzene	19.53	1.0	20	0.12	97.6	80-125	20.13	3.03	30	
Bromochloromethane	20.76	1.0	20	0	104	72-141	21.6	3.97	30	
Bromodichloromethane	19.31	1.0	20	0	96.6	75-125		2.2	30	
Bromoform	17.3	1.0	20	0	86.5	60-125		0.696	30	
Bromomethane	28.27	1.0	20	0	141	30-185		9.68	30	
Carbon disulfide	21.6	1.0	20	0	108	60-165		3.55	30	
Carbon disulide	20.86	1.0	20	0	104	65-140		3.62	30	
Carbon tetrachionide Chlorobenzene	19.69	1.0	20	0	98.4	80-120	20.32	3.15	30	
	34.07	1.0	20	0	170	31-172		36.1	30	R
Chloroethane	19.52	1.0	20	0	97.6	80-130		4.11	30	11
Chloroform	17.9		20		87.8	46-148		4.11		
Chloromethane	307	1.0	20	0.35	01.0	75-134		1.68	30	SEC

Client:

BB&E, Inc.

Work Order:

1904634

Project:

SSW Collis 2019 LTM Task 1

Batch ID: R258364	Instrument ID VMS10		Method:	SW8260C						
cis-1,3-Dichloropropene	17.98	1.0	20	0	89.9	70-130	18.35	2.04	30	
Dibromochloromethane	17.69	1.0	20	0	88.4	60-115	18.41	3.99	30	
Dibromomethane	19.8	1.0	20	0	99	79-126	20.02	1.1	30	
Dichlorodifluoromethane	17.3	1.0	20	0	86.5	20-120	18.05	4.24	30	
Ethylbenzene	20	1.0	20	0	100	76-123	20.7	3.44	30	
Hexachlorobutadiene	20.84	1.0	20	0	104	70-155	20.39	2.18	30	
Hexachloroethane	16.9	1.0	20	0	84.5	50-124	16.62	1.67	30	
lodomethane	29.11	1.0	20	0	146	60-160	27.36	6.2	30	
Isopropylbenzene	20.68	1.0	20	0	103	80-127	21.35	3.19	30	
m,p-Xylene	40	2.0	40	0.1	99.8	75-130	41.63	3.99	30	
Methyl tert-butyl ether	21.25	1.0	20	0	106	68-129	22.14	4.1	30	
Methylene chloride	19.54	5.0	20	0	97.7	72-125	20.13	2.97	30	
Naphthalene	18.82	5.0	20	0	94.1	55-160	18.77	0.266	30	
n-Butylbenzene	19.35	1.0	20	0	96.8	75-145	19.69	1.74	30	
n-Propylbenzene	19.5	1.0	20	0	97.5	76-116	20.37	4.36	30	
o-Xylene	19.79	1.0	20	0	99	76-127	20.59	3.96	30	
p-Isopropyltoluene	19.27	1.0	20	0	96.4	61-164	19.78	2.61	30	
sec-Butylbenzene	20.28	1.0	20	0	101	80-134	21.32	5	30	
Styrene	20.04	1.0	20	0	100	83-137	20.42	1.88	30	
tert-Butyl alcohol	103.5	20	100	0	104	70-130	106.1	2.46	30	
tert-Butylbenzene	20.34	1.0	20	0	102	70-130	21.08	3.57	30	
Tetrachloroethene	21.08	1.0	20	0	105	68-166	21.77	3.22	30	
Tetrahydrofuran	18.07	1.0	20	0	90.4	54-139	18.97	4.86	30	
Toluene	19.52	1.0	20	0	97.6	76-125	20.23	3.57	30	
trans-1,2-Dichloroethene	34.52	1.0	20	15.94	92.9	80-140	38.58	11.1	30	
rans-1,3-Dichloropropene	17.47	1.0	20	0	87.4	56-132	18.03	3.15	30	
rans-1,4-Dichloro-2-butene	13.61	2.0	20	0	68	46-118	14.55	6.68	30	
Trichloroethene	260.4	1.0	20	249.4	55.4	84-130	252.6	3.07	30	SEO
Trichlorofluoromethane	22.85	1.0	20	0	114	60-140	23.72	3.74	30	
Vinyl chloride	72.99	1.0	20	47.23	129	50-136	72.52	0.646	30	
Surr: 1,2-Dichloroethane-c	19.84	0	20	0	99.2	75-120	20.29	2.24	30	
Surr: 4-Bromofluorobenze	ne 19.79	0	20	0	99	80-110	19.89	0.504	30	
Surr: Dibromofluorometha	ne 19.36	0	20	0	96.8	85-115	20.13	3.9	30	
Surr: Toluene-d8	18.98	0	20	0	94.9	85-110	19.28	1.57	30	

The following	samples	were	analyzed	in	this	batch:
---------------	---------	------	----------	----	------	--------

1904634-01A	1904634-02A	1904634-03A
1904634-04A	1904634-05A	1904634-06A
1904634-07A	1904634-08A	1904634-09A
1904634-10A	1904634-11A	1904634-12A
1904634-13A	1904634-14A	1904634-15A
1904634-16A	1904634-17A	

Client:

BB&E, Inc.

Work Order:

1904634

Project:

Batch ID: R258492 Instrument	ID VMS11		Metho	d: SW826	0C						
MBLK Sample ID: VBLKW2-190412-R258492					Units: µg/L			Analysis Date: 4/13/2019 12:20 PM			
Client ID:	Run ID: VMS11_		_190412B	SeqNo: 5606844		6844	Prep Date:		DF: 1		
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
cis-1,2-Dichloroethene	U	1.0									
Trichloroethene	U	1.0									
Surr: 1,2-Dichloroethane-d4	17.11	0	20		0	85.6	75-120		0		
Surr: 4-Bromofluorobenzene	19.46	0	20		0	97.3	80-110		0		
Surr: Dibromofluoromethane	19.06	0	20		0	95.3	85-115		0		
Surr: Toluene-d8	19.08	0	20		0	95.4	85-110		0		
										14010040	44 00 DM
_CS Sample ID: VLCSW3-190412-R258492				Units: µg/L SeqNo: 5606810			Analysis Date: 4/12/2019 11:36 P				
Client ID:	Run ID	: VMS11	_190412B		Se	qNo: 560	6810	Prep Date:		DF: 1	
				SPK Ref			Control	RPD Ref		RPD Limit	
Analyte	Result	PQL	SPK Val	Value		%REC	Limit	Value	%RPD	LIIIII	Qual
cis-1,2-Dichloroethene	20.41	1.0	20		0	102	75-134	1	0		
Trichloroethene	19.98	1.0	20		0	99.9	84-130		0		
Surr: 1,2-Dichloroethane-d4	17.39	0	20		0	87	75-120		0		
Surr: 4-Bromofluorobenzene	20.38	0	20		0	102	80-110		0		
Surr: Dibromofluoromethane	19.62	0	20		0	98.1	85-115		0		
Surr: Toluene-d8	19.17	0	20		0	95.8	85-110		0		
MS Sample ID: 1904	780-01A MS				ı	Jnits: µg/l	_	Analy	sis Date: 4	/13/2019	08:01 AN
Client ID:	Run ID: VMS11_190412B			SeqNo: 5606840			6840	Prep Date: DF: 1			
				SPK Ref			Control	RPD Ref		RPD	
Analyte	Result	PQL	SPK Val	Value		%REC	Limit	Value	%RPD	Limit	Qual
cis-1,2-Dichloroethene	19.74	1.0	20	0.1	11	98.2	75-134		0		
Trichloroethene	20.63	1.0	20		0	103	84-130		0		
Surr: 1,2-Dichloroethane-d4	17.25	0	20		0	86.2	75-120		0		
Surr: 4-Bromofluorobenzene	20.03	0	20		0	100	80-110		0		
Surr: Dibromofluoromethane	19.88	0	20		0	99.4	85-115		0		
Surr: Toluene-d8	19	0	20		0	95	85-110		0		
MS Sample ID: 1904	792-01A MS				Units: µg/L		Analysis Date: 4/13/2019 08:44			08:44 AN	
Client ID:	Run ID: VMS11_190412B				SeqNo: 5606842		6842	Prep Date:	DF: 1		
				SPK Ref			Control	RPD Ref		RPD	
Analyte	Result	PQL	SPK Val	Value		%REC	Limit	Value	%RPD	Limit	Qual
cis-1,2-Dichloroethene	20.75	1.0	20		0	104	75-134		0		
Trichloroethene	21.91	1.0	20		0	110	84-130		0		
Surr: 1,2-Dichloroethane-d4	16.87	0	20		0	84.4	75-120		0		
Surr: 4-Bromofluorobenzene	20.16	0	20		0	101	80-110		0		
Surr: Dibromofluoromethane	19.75	0	20		0	98.8	85-115		0		

Client:

BB&E, Inc.

Work Order:

1904634

Project:

SSW Collis 2019 LTM Task 1

QC BATCH REPORT

Batch ID: R258492 Instrumen	t ID VMS11		Metho	d: SW8260C						
MSD Sample ID: 190	4780-01A MSD				Units: µg/l	4	Analys	is Date: 4/	13/2019 (08:22 AN
Client ID:	Run ID	: VMS11	_190412B	S	eqNo: 560	6841	Prep Date:		DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
cis-1,2-Dichloroethene	20.76	1.0	20	0.11	103	75-134	19.74	5.04	30	
Trichloroethene	21.84	1.0	20	0	109	84-130	20.63	5.7	30	
Surr: 1,2-Dichloroethane-d4	17.13	0	20	0	85.6	75-120	17.25	0.698	30	
Surr: 4-Bromofluorobenzene	20.15	0	20	0	101	80-110	20.03	0.597	30	
Surr: Dibromofluoromethane	20.15	0	20	0	101	85-115	19.88	1.35	30	
Surr: Toluene-d8	18.95	0	20	0	94.8	85-110	19	0.264	30	
MSD Sample ID: 190	4792-01A MSD				Units: µg/L		Analysi	s Date: 4/	13/2019 0	9:06 AM
Client ID:	Run ID	: VMS11	_190412B	Se	eqNo: 560	6843	Prep Date:		DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
cis-1,2-Dichloroethene	20.7	1.0	20	0	104	75-134	20.75	0.241	30	
Trichloroethene	21.63	1.0	20	0	108	84-130	21.91	1.29	30	
Surr: 1,2-Dichloroethane-d4	16.76	0	20	0	83.8	75-120	16.87	0.654	30	
Surr: 4-Bromofluorobenzene	20.07	0	20	0	100	80-110	20.16	0.447	30	
Surr: Dibromofluoromethane	19.63	0	20	0	98.2	85-115	19.75	0.609	30	
Surr: Toluene-d8	19	0	20	0	95	85-110	19.39	2.03	30	

The following samples were analyzed in this batch:

1904634-09A	1904634-12A	1904634-13A	
1904634-14A	1904634-15A		

QC BATCH REPORT

Client:

BB&E, Inc.

Work Order:

1904634

Project:

SSW Collis 2019 LTM Task 1

Batch ID: R258576	Instrument ID	VMS6		Metho	d: SW826	60C					
MBLK	Sample ID: VBLKW	1-190416-R25	8576			Units: µg/l	_ ,	Analy	sis Date: 4	/16/2019	01:28 PN
Client ID:		Run ID	: VMS6_	190416A		SeqNo: 560	9461	Prep Date:		DF: 1	
			_		SPK Ref		Control	RPD Ref		RPD	
Analyte		Result	PQL	SPK Val	Value	%REC	Limit	Value	%RPD	Limit	Qual
1,1,1,2-Tetrachloroetha	ane	U	1.0								
1,1,1-Trichloroethane		U	1.0								
1,1,2,2-Tetrachloroetha	ane	U	1.0								
1,1,2-Trichloroethane		U	1.0								
1,1,2-Trichlorotrifluoroe	ethane	U	1.0								
1,1-Dichloroethane		U	1.0								
1,1-Dichloroethene		U	1.0								
1,1-Dichloropropene		U	1.0								
1,2,3-Trichlorobenzene)	0.37	1.0								J
1,2,3-Trichloropropane		U	1.0								
1,2,4-Trichlorobenzene		0.41	1.0								J
1,2,4-Trimethylbenzene		U	1.0								
1,2-Dibromo-3-chlorop		U	1.0								
1,2-Dibromoethane		U	1.0								
1,2-Dichlorobenzene		0.17	1.0								J
1,2-Dichloroethane		U	1.0								
1,2-Dichloropropane		U	1.0								
1,3,5-Trichlorobenzene	3	U	1.0								
1,3,5-Trimethylbenzen		U	1.0								
1,3-Dichlorobenzene		0.21	1.0								J
1,3-Dichloropropane		U	1.0								
1,4-Dichlorobenzene		0.22	1.0								J
2,2-Dichloropropane		U	1.0								
2-Butanone		U	5.0								
2-Chloroethyl vinyl eth	er	U	1.0								
2-Chlorotoluene	51	U	1.0								
2-Hexanone		U	5.0								
2-Methylnaphthalene		0.6	5.0								J
4-Chlorotoluene		U	1.0								
4-Isopropyltoluene		U	1.0								
4-Methyl-2-pentanone		U	1.0								
Acetone		U	10								
Acrolein		U	1.0								
Acrylonitrile		U	1.0								
Benzene		U	1.0								
Benzyl chloride		U	1.0								
Bromobenzene		0.15	1.0								J
		U.13	1.0								ŭ
Bromochloromethane Bromodichloromethane	•	U	1.0								
	=	U	1.0								
Bromoform		1.43									
Bromomethane		0.4	1.0 1.0								J

QC BATCH REPORT

Client:

BB&E, Inc. 1904634

Work Order: Project:

SSW Collis 2019 LTM Task 1

Batch ID: R258576	Instrument ID VMS6		Method:	SW8260C				
Carbon tetrachloride	U	1.0						
Chlorobenzene	U	1.0						
Chloroethane	U	1.0						
Chloroform	U	1.0						
Chloromethane	U	1.0						
cis-1,2-Dichloroethene	U	1.0						
cis-1,3-Dichloropropene	U	1.0						
Dibromochloromethane	U	1.0						
Dibromomethane	U	1.0						
Dichlorodifluoromethane	U	1.0						
Ethylbenzene	U	1.0						
Hexachlorobutadiene	0.34	1.0						J
Hexachloroethane	U	1.0						3
Hexane	U	1.0						
lodomethane	2.15	1.0						
Isopropylbenzene	U	1.0						
n,p-Xylene	U	2.0						
Methyl tert-butyl ether	U	1.0						
Methylene chloride	U	5.0						
Naphthalene	0.54	5.0						J
n-Butylbenzene	0.12	1.0						J
n-Propylbenzene	U	1.0						-
o-Xylene	U	1.0						
o-Isopropyltoluene	U	1.0						
sec-Butylbenzene	U	1.0						
Styrene	U	1.0						
ert-Butyl alcohol	U	20						
ert-Butylbenzene	U	1.0						
Tetrachloroethene	U	1.0						
Tetrahydrofuran	U	1.0						
Toluene	U	1.0						
rans-1,2-Dichloroethene	U	1.0						
rans-1,3-Dichloropropene	U	1.0						
rans-1,4-Dichloro-2-butene	U	2.0						
richloroethene	U	1.0						
richlorofluoromethane	U	1.0						
/inyl acetate	U	5.0						
/inyl chloride	U	1.0						
Surr: 1,2-Dichloroethane-o	20.08	0	20	0	100	75-120	0	
Surr: 4-Bromofluorobenzer	ne 19.28	0	20	0	96.4	80-110	0	
Surr: Dibromofluoromethal		0	20	0	95.1	85-115	0	
Surr: Toluene-d8	20.29	0	20	0	101	85-110	0	

QC BATCH REPORT

Client:

BB&E, Inc.

Work Order:

1904634

Project:

SSW Collis 2019 LTM Task 1

nio ID: VI COMIA 400446 DOS										
ple ID: VLCSW1-190416-R25	8576			ι	Jnits: µg/L		Analys	sis Date: 4	/16/2019	12:12 PM
Run ID	: VMS6_	190416A		Se	qNo: 560 9	9460	Prep Date:		DF: 1	
			SDK Bef			Control	RPD Ref		RPD	
Result	PQL	SPK Val	Value		%REC	Limit	Value	%RPD	Limit	Qual
19.21	1.0	20		0	96	73-114	0	í		
20.42	1.0	20		0	102	75-130	0)		
19.96	1.0	20		0	99.8	75-130	0			
20.22	1.0	20		0	101	75-125	0			
21.67	1.0	20		0	108	68-142	0			
22.17	1.0	20		0	111	70-145	C			
19	1.0	20		0	95	75-135	C)		
20.71	1.0	20		0	104	70-140	C	1		
19.21	1.0	20		0	96	75-125	C)		
21.39	1.0			0	107	70-135				
19.66				0	98.3	75-130	C)		
							C)		
							C)		
							C)		
						78-125	C)		
						75-125				
				-						
										В
										Б
16.57 20.21	1.0 1.0	20 20		0	82.8 101	46-148 75-134	(
	19.21 20.42 19.96 20.22 21.67 22.17 19 20.71 19.21 21.39 19.66 18.06 21.22 19.69 19.58 19.22 19.88 19.42 20.04 20.24 21.82 20.72 19.07 19.19 19.58 21.07 27.41 17.88 21.52 19.96 18.4 21.28 20.23 15.6 17.53 22.49 19.66 19.72 17.97 20.43 16.57	19.21 1.0 20.42 1.0 19.96 1.0 20.22 1.0 21.67 1.0 22.17 1.0 19 1.0 20.71 1.0 19.21 1.0 21.39 1.0 19.66 1.0 19.68 1.0 21.22 1.0 19.69 1.0 19.58 1.0 19.58 1.0 19.22 1.0 19.88 1.0 20.04 1.0 20.04 1.0 20.04 1.0 20.24 1.0 20.04 1.0 21.82 1.0 20.72 5.0 19.07 1.0 19.19 5.0 19.58 1.0 21.07 1.0 27.41 1.0 17.88 10 21.52 1.0 19.96 1.0 17.53 1.0 21.28 1.0 20.23 1.0 15.6 1.0 17.53 1.0 22.49 1.0 19.72 1.0 19.72 1.0 19.72 1.0 19.72 1.0 19.72 1.0 19.72 1.0 19.72 1.0 19.72 1.0 19.72 1.0 19.72 1.0 19.72 1.0 19.72 1.0 19.77 1.0 20.43 1.0	19.21 1.0 20 20.42 1.0 20 19.96 1.0 20 21.67 1.0 20 22.17 1.0 20 19 1.0 20 22.17 1.0 20 19 1.0 20 20.71 1.0 20 19.21 1.0 20 19.21 1.0 20 19.66 1.0 20 19.68 1.0 20 19.58 1.0 20 19.58 1.0 20 19.88 1.0 20 19.42 1.0 20 19.42 1.0 20 19.42 1.0 20 20.04 1.0 20 21.82 1.0 20 20.04 1.0 20 21.82 1.0 20 19.69 1.0 20 19.42 1.0 20 19.42 1.0 20 21.82 1.0 20 21.82 1.0 20 21.82 1.0 20 21.82 1.0 20 21.82 1.0 20 21.82 1.0 20 21.82 1.0 20 21.83 1.0 20 21.84 1.0 20 21.85 1.0 20 19.96 1.0 20 19.96 1.0 20 19.98 1.0 20 21.07 1.0 20 21.107 1.0 20 21.28 1.0 20 21.52 1.0 20 19.96 1.0 20 21.52 1.0 20 19.96 1.0 20 21.28 1.0 20 21.28 1.0 20 21.28 1.0 20 21.28 1.0 20 21.28 1.0 20 21.28 1.0 20 21.28 1.0 20 21.28 1.0 20 21.28 1.0 20 21.28 1.0 20 21.28 1.0 20 21.28 1.0 20 21.29 1.0 20 19.66 1.0 20 19.72 1.0 20 19.72 1.0 20 19.72 1.0 20 19.72 1.0 20 19.72 1.0 20 19.72 1.0 20 19.72 1.0 20 19.72 1.0 20 19.72 1.0 20 19.72 1.0 20 19.72 1.0 20 19.72 1.0 20 19.72 1.0 20 19.72 1.0 20 19.72 1.0 20 19.72 1.0 20 19.72 1.0 20	19.21	Result PQL SPK Val Value 19.21 1.0 20 0 20.42 1.0 20 0 19.96 1.0 20 0 20.22 1.0 20 0 21.67 1.0 20 0 19 1.0 20 0 20.71 1.0 20 0 19.21 1.0 20 0 19.21 1.0 20 0 19.66 1.0 20 0 19.66 1.0 20 0 19.69 1.0 20 0 19.58 1.0 20 0 19.42 1.0 20 0 19.42 1.0 20 0 20.04 1.0 20 0 20.24 1.0 20 0 21.82 1.0 20 0 19.07 1.0 20 0 <td> Result PQL SPK Val Value %REC </td> <td> Result PQL SPK Val Value %REC Limit </td> <td> Result PQL SPK Val Value %REC Limit Value 19.21 1.0 20 0 96 73-114 0 20.42 1.0 20 0 99.8 75-130 0 20.42 1.0 20 0 99.8 75-130 0 20.22 1.0 20 0 101 75-125 0 20.22 1.0 20 0 108 68-142 0 20.22 1.0 20 0 111 70-145 0 20.42 1.0 20 0 104 70-140 0 20.71 1.0 20 0 104 70-140 0 20.71 1.0 20 0 104 70-140 0 20.71 1.0 20 0 96 75-125 0 20.71 1.0 20 0 96 75-125 0 20.71 1.0 20 0 96 75-125 0 20.71 1.0 20 0 98.3 75-130 0 20.71 1.0 20 0 98.3 75-130 0 20.71 20.72 </td> <td> Result POL SPK Val Value %REC Limit Value %RPD </td> <td> Result PQL SPK Val Value %REC Limit Value %RPD Limit </td>	Result PQL SPK Val Value %REC	Result PQL SPK Val Value %REC Limit	Result PQL SPK Val Value %REC Limit Value 19.21 1.0 20 0 96 73-114 0 20.42 1.0 20 0 99.8 75-130 0 20.42 1.0 20 0 99.8 75-130 0 20.22 1.0 20 0 101 75-125 0 20.22 1.0 20 0 108 68-142 0 20.22 1.0 20 0 111 70-145 0 20.42 1.0 20 0 104 70-140 0 20.71 1.0 20 0 104 70-140 0 20.71 1.0 20 0 104 70-140 0 20.71 1.0 20 0 96 75-125 0 20.71 1.0 20 0 96 75-125 0 20.71 1.0 20 0 96 75-125 0 20.71 1.0 20 0 98.3 75-130 0 20.71 1.0 20 0 98.3 75-130 0 20.71 20.72	Result POL SPK Val Value %REC Limit Value %RPD	Result PQL SPK Val Value %REC Limit Value %RPD Limit

BB&E, Inc.

Work Order:

1904634

Project:

SSW Collis 2019 LTM Task 1

QC BATCH REPORT

Batch ID: R258576	Instrument ID VMS6		Method:	SW8260C				
cis-1,3-Dichloropropene	19.7	1.0	20	0	98.5	70-130	0	
Dibromochloromethane	15.54	1.0	20	0	77.7	60-115	0	
Dibromomethane	18.94	1.0	20	0	94.7	79-126	0	
Dichlorodifluoromethane	13.35	1.0	20	0	66.8	20-120	0	
Ethylbenzene	20.07	1.0	20	0	100	76-123	0	
Hexachlorobutadiene	22.13	1.0	20	0	111	70-155	0	
Hexachloroethane	17.04	1.0	20	0	85.2	50-124	0	
lodomethane	21.99	1.0	20	0	110	60-160	0	В
Isopropylbenzene	19.68	1.0	20	0	98.4	80-127	0	
m,p-Xylene	39.49	2.0	40	0	98.7	75-130	0	
Methyl tert-butyl ether	21.92	1.0	20	0	110	68-129	0	
Methylene chloride	18.38	5.0	20	0	91.9	72-125	0	
Naphthalene	21.74	5.0	20	0	109	55-160	0	
n-Butylbenzene	21.93	1.0	20	0	110	75-145	0	
n-Propylbenzene	19.69	1.0	20	0	98.4	76-116	0	
o-Xylene	17.96	1.0	20	0	89.8	76-127	0	
p-Isopropyltoluene	21.07	1.0	20	0	105	61-164	0	
sec-Butylbenzene	20.56	1.0	20	0	103	80-134	0	
Styrene	18.41	1.0	20	0	92	83-137	0	
tert-Butyl alcohol	102.7	20	100	0	103	70-130	0	
tert-Butylbenzene	19.82	1.0	20	0	99.1	70-130	0	
Tetrachloroethene	19.51	1.0	20	0	97.6	68-166	0	
Tetrahydrofuran	20.48	1.0	20	0	102	54-139	0	
Toluene	19.74	1.0	20	0	98.7	76-125	0	
trans-1,2-Dichloroethene	21.85	1.0	20	0	109	80-140	0	
trans-1,3-Dichloropropene	19.09	1.0	20	0	95.4	56-132	0	
trans-1,4-Dichloro-2-butene	15.9	2.0	20	0	79.5	46-118	0	
Trichloroethene	18.94	1.0	20	0	94.7	84-130	0	
Trichlorofluoromethane	16.85	1.0	20	0	84.2	60-140	0	
Vinyl chloride	17.51	1.0	20	0	87.6	50-136	0	
Surr: 1,2-Dichloroethane-	-d4 19.81	0	20	0	99	75-120	0	
Surr: 4-Bromofluorobenze	ene 19.59	0	20	0	98	80-110	0	
Surr: Dibromofluorometh	ane 20.26	0	20	0	101	85-115	0	
Surr: Toluene-d8	19.61	0	20	0	98	85-110	0	

The following samples were analyzed in this batch:

1904634-14A

BB&E, Inc.

Work Order:

1904634

Project:

SSW Collis 2019 LTM Task 1

Batch ID: R258375a	Instrument ID LACHAT2		Method	d: E353.2	R2.0					
MBLK	Sample ID: MBLK-R258375a				Units: mg/l	L	Analysi	s Date: 4/	12/2019 1	2:38 PM
Client ID:	Run II	D: LACH	AT2_190412/	Α	SeqNo: 560 4	1663	Prep Date:		DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Nitrogen, Nitrate-Nitri	te U	0.020								
LCS	Sample ID: LCS-R258375a				Units: mg/l		Analysi	s Date: 4/	12/2019 1	2:39 PM
Client ID:	Run II	D: LACH	AT2_190412/	A	SeqNo: 560 4	1664	Prep Date:		DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Nitrogen, Nitrate-Nitri	te 5.184	0.020	5		0 104	80-120	0			
MS	Sample ID: 1904625-04A MS				Units: mg/	L	Analysi	s Date: 4/	12/2019 1	2:48 PM
Client ID:	Run I	D: LACH	AT2_190412	A	SeqNo: 560 4	1 671	Prep Date:		DF: 1	
Analyte	Result	PQL	. SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Nitrogen, Nitrate-Nitri	te 12.7	0.020	5	8.64	9 81	75-125	0			Е
MS	Sample ID: 1904634-12C MS				Units: mg/	L	Analysi	s Date: 4/	12/2019 1	2:54 PM
Client ID: COL-GW-1	2 Run I	D: LACH	AT2_190412	A	SeqNo: 560 4	1676	Prep Date:		DF: 1	
Analyte	Result	PQL	. SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Nitrogen, Nitrate-Nitri	te 5.252	0.020	5	-0.00604	9 105	75-125	0			
MSD	Sample ID: 1904625-04A MSD				Units: mg/	L	Analysi	s Date: 4/	12/2019 1	2:49 PM
Client ID:	Run I	D: LACH	AT2_190412	A	SeqNo: 560 4	4672	Prep Date:		DF: 1	
Analyte	Result	PQL	. SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Nitrogen, Nitrate-Nitri	te 12.77	0.020	5	8.64	9 82.4	75-125	12.7	0.55	20	Е
MSD	Sample ID: 1904634-12C MSD				Units: mg/	L	Analysi	s Date: 4	12/2019 1	2:55 PM
Client ID: COL-GW-1	2 Run I	D: LACH	IAT2_190412	A	SeqNo: 560 4	4677	Prep Date:		DF: 1	
Analyte	Result	PQL	. SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
	te 5.39	0.020	5	-0.00604	9 108	75-125	5.252	2.59	20	
Nitrogen, Nitrate-Nitri										

BB&E, Inc.

Work Order:

1904634

Project:

SSW Collis 2019 LTM Task 1

Batch ID: R258511	Instrument ID WETCH	HEM		Method	: SW903	34						
MBLK	Sample ID: MB-R258511-R	258511				U	Jnits: mg/	L	Ana	lysis Date: 4	/15/2019 (2:30 PM
Client ID:		Run ID: V	VETCH	IEM_19041	5N	Se	qNo: 560 7	7508	Prep Date:		DF: 1	
Analyte	Res	sult	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Sulfide		U	1.0									
LCS	Sample ID: LCS-R258511-R	R258511				U	Inits: mg/I		Ana	lysis Date: 4	/15/2019 0	2:30 PM
Client ID:	F	Run ID: V	VETCH	IEM_19041	SN .	Sec	qNo: 560 7	7509	Prep Date:		DF: 1	
Analyte	Res	sult	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Sulfide	8	.52	1.0	10.75		0	79.3	56-102		0		

BB&E, Inc.

Work Order:

1904634

Project:

SSW Collis 2019 LTM Task 1

Batch ID: R258534	Instrument ID IC4			Metho	d: SW905	6A						
MBLK	Sample ID: CCB/MBLK	-R258534	ı			U	nits: mg/	L	Analys	sis Date: 4/	15/2019 1	1:30 AN
Client ID:		Run II	D: IC4_19	0415A		Sec	No: 560	8057	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Chloride		U	1.0									
Sulfate		U	1.0									
LCS	Sample ID: LCS-R2585	34				U	nits: mg /	L	Analys	sis Date: 4/	15/2019 1	2:34 PN
Client ID:		Run II	D: IC4_19	0415A		Sec	No: 560	8058	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Chloride		9.286	1.0	10		0	92.9	88-110	C)		
Sulfate		9.586	1.0	10		0	95.9	90-110	C			
MS	Sample ID: 1904634-12	BMS				U	nits: mg/	L	Analys	sis Date: 4/	15/2019 0	2:44 PN
Client ID: COL-GW-	12	Run II	D: IC4_19	0415A		Sec	No: 560	8065	Prep Date:		DF: 40	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Chloride		468.5	40	400	68.	14	100	88-110	C)		
Sulfate		494	40	400	100	.7	98.3	90-110	C	ĺ		
MSD	Sample ID: 1904634-12	B MSD				Uı	nits: mg/	L	Analys	sis Date: 4/	15/2019 0	3:00 PN
Client ID: COL-GW-	12	Run II	D: IC4_19	0415A		Sec	No: 560	8066	Prep Date:		DF: 40	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Chloride		465.8	40	400	68.	14	99.4	88-110	468.5	0.578	20	
Sulfate		487.3	40	400	100	.7	96.6	90-110	494	1.36	20	
The following samp	eles were analyzed in this	s batch:		904634-05B 904634-14B			34-12B 34-16B	19	04634-13B			

BB&E, Inc.

Work Order:

1904634

Project:

SSW Collis 2019 LTM Task 1

Batch ID: R258587	Instrument ID W	ETCHEM		Method	d: SW90 3	34							
MBLK	Sample ID: MB-R2585	87-R258587				U	nits: mg/	L	Anal	ysis Date	4/16/20	019 02	2:15 PM
Client ID:		Run ID:	WETCH	HEM_190410	61	Se	No: 560 9	9896	Prep Date:		DI	F: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RP	RPI D Lim		Qual
Sulfide		U	1.0										
LCS	Sample ID: LCS-R258	587-R25858	7			U	nits: mg/	L	Anal	ysis Date	4/16/20	19 0	2:15 PM
Client ID:		Run ID:	WETCH	HEM_190416	6 l	Sec	No: 560 9	9897	Prep Date:		DI	F: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPI	RPI D Lim		Qual
Sulfide		9.96	1.0	10.75		0	92.7	56-102		0			
MS	Sample ID: 1904634-1	2DMS				U	nits: mg/ l	L	Anal	ysis Date	4/16/20	19 02	2:15 PM
Client ID: COL-GW-	12	Run ID:	WETCH	IEM_190416	SI	Sec	No: 560 9	9899	Prep Date:		DI	F: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPI	RPI D Lim	_	Qual
Sulfide		9.96	1.0	10.75		0	92.7	56-102		0			
MSD	Sample ID: 1904634-1	2DMSD				U	nits: mg/l	Ĺma	Anal	ysis Date	4/16/20	19 02	2:15 PM
Client ID: COL-GW-1	12	Run ID:	WETCH	IEM_190416	SI	Sec	No: 560 9	9900	Prep Date:		DI	∹ 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPI	RPI D Lim		Qual
Sulfide		10.08	1.0	10.75		0	93.8	56-102	9.9	96	1.2	10	
The following samp	les were analyzed in th	is batch:		904634-12D 904634-16D	19	046	34-13D	19	04634-14D				

Preservative Key: 1-HCI

Cincinnati, OH +1 513 733 5336

Everett, WA Holland, MI +1 616 399 6070 +1 425 356 2600

Fort Collins, CO +1 970 490 1511 **Chain of Custody Form**

of Z

Houston, TX +1 281 530 5656 Spring City, PA +1 610 948 4903 South Charleston, WV +1 304 356 3168

Middletown, PA +1 717 944 5541 Salt Lake City, UT +1 801 266 7700

York, PA +1 717 505 5280

coc ID: 187223 **ALS Project Manager:** ALS Work Order #: 904634 **Customer Information Project Information** Parameter/Method Request for Analysis SSW Coilis 2018 LTM Task 1 Purchase Order VOCS **Project Name** Work Order В Chloride, Nitrate+Nitrite, Sulfate **Project Number** Company Name BBSE LLC **Bill To Company** BB&E, LLC C Dissolved Iron and Manganese Send Report To Accounts Payable Kacle Van Buskirk Invoice Attn D Sulfide 235 East Main Street 235 East Main Street Methane, Ethane, Ethene Address Address Suite 107 1.4-Dioxane Suite 107 G City/State/Zip Northwille, MI 48167 City/State/Zip Northville, MI 48167 Н (248) 489-9636 Phone (248) 489-4636 Phone Fax 12481 489 9646 Fax (248) 489-9646 e-Mail Address e-Mail Address # Bottles Date Time Matrix B D G Hold No. Sample Description Pres. A C 3 X 418/19 0935 COL-GW-0) GW 1020 3 Col-GW-02 418119 X X COL-GW-03 4/8/19 1100 POL- GW-09 1300 COL-GW- 05 12 XXX Λ 4/8/19 X 1355 COL-COU-OU 3 418119 7 1355 (OL-GW-07 4148/19 1455 GM 1540 COL- GW- 04 4/8/19 0830 419/19 COL-GW-10 Sampler(s) Please Print & Sign Shipment Method Required Turnaround Time: (Check Box) Results Due Date: Other KUCH Std 10 WK Dave T 5 WK Davs 2 WK Davs 17 24 Hour Relinquished by: Received by: Received by (Laboratory) Time: Relinquished by: Cooler ID Cooler Temp. QC Package: (Check One Box Below) 0800 TPRP CheckList Level II Std QC Checked by (Laborator 2.804 Ser Logged by (Laboratory): Lavel III Std QC/Rew Deta TRRP Level IV 1030 Level IV SW846/CLP PMS

Note: 1. Any changes must be made in writing once samples and COC Form have been submitted to ALS Environmental.

4-NaOH

2. Unless otherwise agreed in a formal contract, services provided by ALS Environmental are expressly limited to the terms and conditions stated on the reverse.

The Chain of Controls is a legal document. All information must be completed accurately.

6-NaHSO

7-Other

9-5035

5-Na₂S₂O₃

3-H, SO4

2-HNO₃

[] Other

Cincinnati, OH +1 513 733 5336

Everett, WA +1 425 356 2600 Fort Collins, CO +1 970 490 1511

+1 616 399 6070

Holland, Mi

Chain of Custody Form

Houston, TX +1 281 530 5656 Middletown, PA

Spring City, PA +1 610 948 4903

South Charleston, WV +1 304 356 3168

Salt Lake City, UT +1 717 944 5541 +1 801 266 7700

York, PA +1 717 505 5280

				AL	S Project	Manager:		10.5	to an ⁴		ALS	Work	Order #	! :	190	46	34
(Customer Information		Projec	t Informati	on				Par	amete	er/Me	thod I	Reques	t for	Analys	is	
Purchase Order		Project N	ame S5W	Collis 2018	LTM Task 1		A	VOC	\$								
Work Order		Project Nur	nber				В	Chlor	ide, Nr	trate+1	litrite.	Sulfate	<u> </u>				
Company Name	BB&E, LLC	Bill To Comp	oany BB&B	E, LLC			С	Disso	ived in	oll and	Mang	anese	- No	A	Field	f	iltered
Send Report To	Kacie Van Buskirk	Invoice	Attn Accou	unts Payable			D	Sulfic									
Address	235 East Main Street	Add	ress	ast Main St	reet		E		ane, Et		Ethene	е					
	Sulte 107		Suite					1,4-D	ioxane								
City/State/Zip	Northville, Mi 48167	City/State	Zip North	ville, MI 48	167		G										
Phone	(248) 489-9636	Pt	ione (248)	489-9636	name and about the residence of	***********	Н			*** * **** ****					41.7000.7000.000		F-18
Fax	(248) 489-9646		Fax (248)	489-9646			1	entropy to the state of									
e-Mail Address		e-Mail Add					J	·				Ţ			,		
No.	Sample Description	Date	Time	Matrix	Pres.	# Bottles	A	В	С	D	E	F	G	Н	1	J	Hold
1 COL-61		419/19	0915	6W	1,8	5	X					ļ					
2 COL-GN		4/9/19	1000		1,8,7		X X	X	X	X	X	X					
3 Cor- G1	N-12 Melmed	419/19	(000		1,8,7	24	· · · · · · · · · · · · · · · · · · ·	X	Х	X	X	X					
4 COL- 61	N-13	4/9/19	1000	cm	1,8,7	12	χ	X	4	У	\checkmark	X					
5 COL-GW	. 14	419119	1125	GN	1,8,7	12	ス	1	1	1	^	1					
6 (CL-GU	1-15	4/9/19	1550	GW	118	Z	人	1							And the state of t		
7 EB		414/19	1230	Gn	1,8,7	17	入	`	Х	. >	×	×	an are				
8					.101.			1									
9	And the section plane at a section of the section o																
10	THE RESERVE OF THE PARTY OF THE														- Property of the second		
Sampler(s) Please P	rint & Sign nBuskim A In		nt Method	1 '	iired Turnaro 1 8rd 10 W			•	Cer 2 W	er_ K Døys		24 Hou		sults	Due Dat	ė:	
Relinquished by:	Date:	Time:	Received by:	<i></i>	1		Notes:	······································				1.70	Transport com a no America non a ciumano			-	
Relinquished by:	FEDEX 4/10/19	Time: 080°	Received By (Lal	boratory):			Cool	er ID	Coole	er Temp	QC	Packag	e: (Check	One B			
Logged by (Laboratory	12 New 4/10/19	Time: 1030	Checked by (Lai		a						- [Leve	l II Std QC I III Std QI I IV SW84	C/Rew	Date [-	P CheckList P Level IV
Preservative Key:	1-HCI 2-HNO ₃ 3-H ₂ SO ₄ 4-N	laOH 5-Na ₂ S ₂ O	3 6-NaHSO	7-Other	84°G	9-5035		and a Patient of	<u></u>		1	Othe	r	III DANIE DE LO CONTROL DE		-	

Note: 1. Any changes must be made in writing once samples and COC Form have been submitted to ALS Environmental.

2. Unless otherwise agreed in a formal contract, services provided by ALS Environmental are expressly limited to the terms and conditions stated on the reverse.

The Chain of Custody is a legal document. All information must be completed accurately.

Copyright 2011 by ALS Environmental.

ALS Group, USA

Sample Receipt Checklist

Client Name: BBE	≟			Date/Time	Received.	10-Apr-19	08.00	
Work Order: 190	<u>4634</u>			Received b	y:	<u>KRW</u>		
Checklist completed	by Kuth Wierenga eSignature	10-Apr-	19	Reviewed by:	Chad W.	Vhelton		10-Apr-19
	<u>/ater</u> edEx							'
Shipping container/o	cooler in good condition?	Ye	s 🗸	No 🗌	Not Pres	ent		
Custody seals intact	on shipping container/cooler?	Ye	s	No 🗌	Not Pres	ent 🗸		
Custody seals intact	on sample bottles?	Ye	s	No 🗆	Not Pres	ent 🗸		
Chain of custody pre	esent?	Ye	s 🗸	No 🗌				
Chain of custody sig	ned when relinquished and rec	eived? Ye	s 🗸	No 🗌				
Chain of custody ag	rees with sample labels?	Ye	s 🗸	No 🗌				
Samples in proper c	ontainer/bottle?	Ye	s 🗸	No 🗌				
Sample containers in	ntact?	Ye	s 🗸	No 🗌				
Sufficient sample vo	lume for indicated test?	Ye	s 🗸	No 🗌				
All samples received	d within holding time?	Ye	s 🗸	No 🗌				
Container/Temp Bla	nk temperature in compliance?	Ye	s 🗸	No 🗌				
Sample(s) received	on ice?		s 🗸	No 🗌				
Temperature(s)/The	rmometer(s):	2.8/2	2.8 C		SF	<u>R2</u>		
Cooler(s)/Kit(s):	N	4/40	10040	44.45.00 AM				
Date/Time sample(s Water - VOA vials ha	e) sent to storage: ave zero headspace?		s 🗸	11:15:23 AM No	No VOA vials	s submitted		
Water - pH acceptat		Ye	s 🗸	No 🗌	N/A			
pH adjusted?		Ye	s 🗌	No 🗸	N/A			
pH adjusted by:		-						
Login Notes:								
Client Contacted:	D	ate Contacted:		Persor	Contacted:			
Contacted By:	R	egarding:						
0								
Comments:								
CorrectiveAction:							SRC	Page 1 of 1

ATTACHMENT B

FIELD NOTES

Equipment Calibration Daily Log

Date:	4/ %/19	Project Name:	LTM SA1 2019
Project#:	02028025 Task 1	Recorded by:	KVB

WATER QUALITY	Model: \(\(\bar{\chi}\) \\ Equipment ID#: \(\gamma\)	56 MPS			Morning Calibration/ Check	Evening Check (one point only)	Additional Calib/Check (if needed)
METER	Parameter	Standard	Exp Date	Lot#	Time:	Time:	Time:
	рН	7.0	12/31/20	86L 701	Initials:	Value:	
First Daile	Turbidity (NTU)	60.1	05/2020	3755	0.1	Value: 0.\2	
First Point Calibration (Auto)	Conductivity (mS/cm)	1.413	10/10/19	13410	1,414	Value:	
(Auto)	ORP (MV)	240.0	12/31/23	3086	240	Value: 240,7	
	DO (mg/L)	8.9-9. (ambient air)	NA	NA	8,91	Value:	
0	рН	4.0	12/31/20	214 214	Initials:	Value:	
Second Point Calibration	Turbidity (NTU)	100	11/19	1577	100	Value:	
Calibration	Conductivity (mS/cm)					Value:	
Third Point	рН	10.0	12/31/20	8GL 108	Initials:	Value:	
Calibration	Turbidity	750	12/19	3793	750	Value:	

Turbidity Meter Model and Equipment ID: \(\mathreat{1} \alpha \nu \nu \alpha \)	HI	98103
Additional Remarks:		

Equipment Calibration Daily Log

Turbidity Meter Model and Equipment ID:

Date:	4/ 9/19	Project Name:	LTM SA1 2019
Project#:	02028025 Task 1	Recorded by:	KVB

WATER QUALITY	Model: \ST Equipment ID#: D	556 MPS 8527		Morning Calibration/ Check	Evening Check (one point only)	Additional Calib/Check (if needed)		
METER	Parameter	Standard	Exp Date	Lot#	Time:	Time: (300	Time:	
	рН	7.0	12/3/120	861	Initials:	Value: 6.90		
First Point	Turbidity (NTU)	LG.1	5/2020	3755	LO.1	Value:		
Calibration (Auto)	Conductivity (mS/cm)	1,413	10/10/19	13410	1.414	Value:		
(100)	ORP	240.0	12/31/23	3086	240	Value: 241.2		
	DO (mg/L)	8.9-9. (ambient air)	NA	NA	8.91	Value:		
Second	рН	4.0	12/31/20	86L 214	Initials: Y.O	Value:		
Point Calibration	Turbidity (NTU)	100	11/19	3771	100	Value:		
	Conductivity (mS/cm)					Value:		
Third Point	pН	10.0	12/31/20	108	Initials:	Value:		
Calibration	Turbidity	750	12/14	3793	750.9	Value: 753		

Additional Remarks: _____

MONITOR WELL STATIC WATER LEVEL FORM
Project Name: LTM SA 1 2019
Water Level Indicator ID # 200 909
LOCATION: SSW Collis, Clinton Iowa

MONITOR WELL STATIC WATER LEVEL FORM
DATE: 4/ \$\frac{8}{19}\$
Field Book # \frac{3}{5}\$
Page # 1_ of _1__

Monitor Well Number	Total Well Depth	Well Screen Length	Time	Depth to Static Water Level				
MW-38	9.95	5 ft	0805	3,79				
MW-39	13.91	5 ft	0800	3.41				
MW-50S	12.28	5 ft	0820	3.20				
PZ-47	10.89	10 ft	0822	1,95				
PZ-48	10.65	10 ft	0850	3.20				
MW-34	31.6	5 ft	0875	9,17				
MW-45	25.59	5 ft	0835	0.0				
MW-47S	17.93	5 ft	0900	1,68				
MW-50	24.77	5 ft	0815	3.10				
MW-56	30	5 ft	0845	1.58				
MW-42	50.2	5 ft	0830	4.50				
MW-53	52.24	5 ft	0840	0.0				
MW-43	99.38	5 ft	0810	0.0				

Note: total	well depth	o be measured at time of gauging.
Comments:		
Sampler	KVB	Observer

Monito	ring W	ell Samp	le Col	lection	Form											爲 E	BB&E		
	Site:	SSW C	Collis				Welli	ID: MW	47	5			Da	ite:	4/ 8 /19	9			
LOCATION	1 10,000			SSW Collis			_	le ID: C					Red	Recorded by: KVB					
	Weathe	r Conditions & Ba	arometric Pr	essure: 50	of, SU	ın,	30	,02 in	Hy										
EQUIPMEN		Equipment: 81					Water	Level Indica	ator: So	olins	S 2000	104		PID Type	/ID#:	NA			
	Water C	Quality Meter Type	e and #:	YSI			Samp	ling Equipme	ent: B1	099-	٤/		Turbidime	eter and #: H	anna	+1i 9870			
		10 (in): Zin					Well \	/olume: ~	2.00	va 1			Cor	ndition of We	ell: Gu	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
	Initial De	epth to Water (ft):	1.68	,			Total	Volume Purg	jed: ~ {	ga	l		Wa	ter in Well V	/ault? N	5			
WELL INFO	Total W	ell Depth (ft): \	7.93				Depth	Depth of Pump Intake (ft): Lift From 1070 M							Well Mouth PID (ppm): NA				
	Water C	Column Thickness	(ft): 16.	15			1	cible Layer:				6	Am	bient PID (p	pm):	NA			
	Remark	S:											-						
CASING	Casing	D (in) [a]:		1.0	1.5	1	2.0	2.2	2	3.0	4.0	4.	3	5.0	6	.0	7.0		
INFO		sing Volume (gal/l	in ft) [b];	0.04	0.09		0.16	0.20	0	0.37	0.68			1.0		.5	2.0		
Date	Time (24 hr)	Water Level (FTOC)	Volum		ng Rate (Lpm)	Те	mp (C)	рН	Cond (n	nS/cm)	DO (mg/L)	Turb (NTU)	OF	RP (mv)	Remarks (odor, clari	ty, etc)		
0/-/18	0900	1.72	NA	30	20	9.	86	6.60	0.50	18	5.87	7.73	-L	7.3	Clear	i NO	Cdov		
1	0905	1.77	NA	30	O	9	44	6.19	0.5	37	3.64	5.45		8.4	0.00.	1			
	0910	1-80	NA	30	C	9	34	6.22	0.5	35	3.40	5.78		54.1					
	0915	1.81	NA	300	2	9	.26	6.29	0.5	33	2.46	5.23		9.9					
	0920	1.82	NI	300	5	9	.18	6.32	0.5	32	71,0	5.10	-	55/6					
١	0925	1.82	NA	30	6	9	15	10 33			1.71	50)	1	ω U					

Pump Rate: <=0.5 L/min Drawdown: <0.33 ft Measurements: 5 mins Stabilization for 3 consecutive readings Stabilization: +/-0.5C +/-0.1 pH +/-3% Cond +/- 0.3 mg/LDO +/-10% Tub (or < 50 NTU) +/- 10 mV ORP

300

300

NA

NA

1.82

0935

Otabinzation. 17-0.00,	17-0.	pi i,	17-3 /0 001	iu, +/-	U.S HIG/L DU,	T/-10%	1 N OC > 10) OU 1	U), +/- 10 MV ORP		
Sample Date/Time:4/8)19		# of	Container	Container	Preservative	Filter	Pump, Bailer,	Duplicate (# of	140/1400 (# . 1.0	_
		Containers	Volume	Material	riescivative	(Y/N)	Foot Valve	Containers)	MS/MSD (# of Containers)	Parameter(s) and Analytical Method
Laboratory and	-	(3)	40mL	VOA	HCI	N	Pump			VOCs
Chain-of-Custody #: \8727	25	3	40mL	VOA	HCI	N	Pump			1.4-Dioxane
410	1	2	40mL	VOA	HCI	N	Pump			Methane, Ethane, Ethene (MNAs)
ALS		1	250mL	Plastic	H2SO4	N	Pump			Nitrite/Nitrate (MNAs)
	-	1	500mL	Plastic		N	Pump			Chloride, Sulfate, Metals (MNAs)
		1	500mL	Plastic	ZnAc	N	Pump			Sulfide (MNAs)

12.1

0,532

4,70

-64.2

H:\jobs\SSW\Collis, IA\02028025 - 2019 Long-Term Monitoring\1st Semi-annual Sampling Event\01 - Preparation\Field Forms\Monitoring Well Sample Collection.docx Page 1 of 2 April 2019

	Site: SSW Collis			Well ID:	PZ-47				ate: 4	/§ /19		
LOCATION	Project: #: LTM SA2 2018 S	SSW Collis			ID: COL-C	W- 02	R	Recorded by: KVB				
	Weather Conditions & Barometric Pr	ressure: 60°	t sun	30,02 IV	Hy							
EQUIPMENT	Purging Equipment: アセバンチの1	ri C		Water Le	evel Indicator: S	polinst "	200904		PID Type/ID#:	NA		
- CON MENT	Water Quality Meter Type and #:	YSI		Samplin	g Equipment:	perstalfil		Turbidimeter a	and #: Hunn	urli a8		
	Casing ID (in): \\\			Well Vol	ume: 0,ζ(igul		С	ondition of Well:	6000		
	Initial Depth to Water (ft): 1.45			Total Vo	lume Purged: ,	W	ater in Well Vault	? NO				
WELL INFO	Total Well Depth (ft): 10 . 89			Depth of	Pump Intake (ft	LUF+ B	mna W	Well Mouth PID (ppm): NA				
	Water Column Thickness (ft): 4.	94			ole Layer:	Yes		Ambient PID (ppm): NA				
	Remarks:						N ₉					
CASING	Casing ID (in) [a]:	12	1.5	2.0	2.2	3.0	4.0	4.3	5.0	6.0	7.0	
INFO	Unit Casing Volume (gal/lin ft) [b]:	0.04	0.09	0.16	0.20	0.37	0.65	0.75	1.0	1.5	2.0	

418119

	D	ate			Volume Removed (L)	Pumping Rate (Lpm)	Temp (C)	pН	Cond (mS/cm)	DO (mg/L)	Turb (NTU)	ORP (mv)	Remarks (odor, clarity, etc)
9	10/	/18	0950	1.98	Na	250	8.22	6.33	0.739	6.30	ioi	-74.3	Clear! No odor
1		İ	0955	10.5	Na	250	7.69	6.15	0.711	3.44	33.1	-19.2	, , , , , ,
	\perp		1000	2.04	NA	256	7.57	6.18	6.692	3.74	30.ce	-1.4	
1	1		1003	2,07	NA	250	7.18	6.20		3.24	27-7	12.5	
-	_		1016	7.07	NA	256	7.13	6.23	0.656	2.90	12.0	23.0	
-	1	,	1015	7.07	NA	250	7.16	6.25	0.647	2.95	7.8	25.7	
-	A		1020	7.08	NA	750	7.17	6.26	0.644	2.97	7.6	24.8	
-													
L													

Pump Rate: <=0.5 L/min Drawdown: <0.33 ft Measurements: 5 mins Stabilization for 3 consecutive readings Stabilization: +/-0.5C, +/-0.1 pH +/-3% Cond, +/- 0.3 mg/L DO, +/-10% Tub (or < 50 NTU), +/- 10 mV ORP Sample Date/Time: 4/8/19 # of Container Container Filter Pump, Bailer, Duplicate (# of Preservative Parameter(s) and Analytical Method MS/MSD (# of Containers) Containers Volume Material Foot Valve (Y/N)Containers) Laboratory and 40mL VOA HCI VOCs Ν Pump Chain-of-Custody #: 187223 40mL VOA HCI Ν Pump 1,4-Dioxane 2 40mL VOA HCI N Pump Methane, Ethane, Ethene (MNAs) ALS 250mL Plastic H2SO4 N Pump Nitrite/Nitrate (MNAs) 1 500mL Plastic N Pump Chloride, Sulfate, Metals (MNAs) 500mL Plastic ZnAc Pump Sulfide (MNAs)

H:\jobs\SSW\Collis, IA\02028025 - 2019 Long-Term Monitoring\1st Semi-annual Sampling Event\01 - Preparation\Field Forms\Monitoring Well Sample Collection.docx Page 1 of 2 April 2019

& BB&E

		<u> </u>												T		DXL
	Site:	SSW C	Collis			Well! I	D: PZ-	48				Date	e:	4/ 8/19		
LOCATION	Project:		12 2018 SSV			Sampl	e ID: C	OL-GW- 01	3			Reco	Recorded by: KVB			
	Weather	Conditions & Ba	arometric Pressu	re: 60	of Sun	30,02	inny									
EQUIPMENT	Purging	Equipment: 76	nstalt	il		Water	Level Indica	ator: Solins	+ 70	voqu	1		PID Type/I	'ID#:	NA	
EQUI MENT	Water Q	uality Meter Type	e and #: YS	SI				ent: PENZ+			Turbidimet	ter and #: HO	inha f	11 9876		
	Casing II	O (in): \n	Ĺ			Well V	olume: ~	0.3 gal				Cond	dition of We	ell: Ge	<u>, </u>	
	Initial De	pth to Water (ft):	3,20			Total V	Total Volume Purged: 1,5 gul							ault? N		
WELL INFO	Total We	ell Depth (ft): \O	1.65			Depth	Depth of Pump Intake (ft): Ly ft From borsom						Mouth PID		NA	
	Water Co	olumn Thickness	(ft): 7.45				Immiscible Layer: Yes (3)						Ambient PID (ppm): NA			
	Remarks	i.				· ·						1				
CASING	Casing II) (in) [a]:		1.0	1.5	2.0	2.2	2 3.0		4.0	4.3	3	5.0	6.0		7.0
INFO	Unit Casi	ng Volume (gal/l	lin ft) [b]:	0.04	0.09	0.16	0.2	0 0.37		0.65	0.7	-	1.0	1.5		2.0
Date	Time (24 hr)	Water Level (FTOC)	Volume Removed (L)	Pumpir	ng Rate (Lpm)	Temp (C)	рН	Cond (mS/cm)	DO (n	ng/L) T	urb (NTU)	OR	P (mv)	Remarks (od	or, clarity,	etc)

Date	Time (24 hr)	Water Level (FTOC)	Volume Removed (L)	Pumping Rate (Lpm)	Temp (C)	рН	Cond (mS/cm)	DO (mg/L)	Turb (NTU)	ORP (mv)	Remarks (odor, clarity, etc)
10/_/18	1035	3.30	N¥	८०५	6.35	7.12	0.491	(6.44	115	1.8	CIECIN, NO 2900
	1040	3.35	NA	200	5.52	6.47	0.444	5.70	103	20.4	,
	1045	3.37	NA	200	4,96	6.32	0.454	4.09	128	43.3	
	1050	3.41	NA	200	5.69	6.44	0.458	4.16	55.5	50.0	
	1055	3.42	NA	200	5.74	6.48	0.459	4.21	33.8	51.5	
V	1100	3.40	NA	200	5.70	6.49	0.458	4,20	26.6	52.0	

Pump Rate: <=0.5 L/min Drawdo	own: <0.33 ft	Measurer	nents: 5 min	s Stabiliza	ation for 3	consecutive read	dings		
Stabilization: +/-0.5C, +/-0.	1 pH,	+/-3% Con	id, +/-	0.3 mg/L DO,	+/-10%	Tub (or < 50 NT)	U), +/- 10 mV ORP		
Sample Date/Time:	# of	Container	Container	Preservative	Filter	Pump, Bailer,	Duplicate (# of	MS/MSD (# of Containers)	Decemptor(a) and Applytical Mathed
1100 4/8/19	Containers	Volume	Material	1 10301 Valive	(Y/N)	Foot Valve	Containers)	WISHVISD (# 01 CONTainers)	Parameter(s) and Analytical Method
Laboratory and	(3,)	40mL	VOA	HCI	Ν	Pump			VOCs
Chain-of-Custody #: 187 22 3	3	40mL	VOA	HCI	N	Pump			1,4-Dioxane
41.0	2	40mL	VOA	HCI	N	Pump			Methane, Ethane, Ethene (MNAs)
ALS	1	250mL	Plastic	H2SO4	N	Pump			Nitrite/Nitrate (MNAs)
	1	500mL	Plastic		N	Pump			Chloride, Sulfate, Metals (MNAs)
	1	500mL	Plastic	ZnAc	N	Pump			Sulfide (MNAs)

H:\jobs\SSW\Collis, IA\02028025 - 2019 Long-Term Monitoring\1st Semi-annual Sampling Event\01 - Preparation\Field Forms\Monitoring Well Sample Collection.docx Page 1 of 2 April 2019

418119

WIOIIILOI	ilig vve	anip	ie Com	ection	rom													DD&L
	Site:	SSW C	Collis				Welli ID:	MW	-45					Date	:	4/8/	19	
LOCATION	Project:	#: LTM SA	2 2018 S	SW Collis		:	Sample	ID: CC	DL-GW	- 04				Recor	ded by:	KVB		
	Weather	Conditions & Ba	rometric Pre	essure: (DO	f, sun	, 31	0.02	tnH	4									
EQUIPMENT	Purging	Equipment: B)	adder								2009	04			PID Type/I	D#:	NA	i
	Water Q	uality Meter Type	e and #:	YSI			Samplin	g Equipme	ent: Blo	yder					Turbidimet	er and #:	Hanr	na 4198
	Casing II	D (in): ない	\				Well Vol	ume: ~	4.08	aul				Condi	tion of We	II: 60	א טכי	
	Initial De	pth to Water (ft):	6.0				Total Vo	lume Purg	ed: ~ 2	5 ar	11			Water	in Well Va		NO	
WELL INFO	Total We	ell Depth (ft): 7	5.5			1	Depth of	f Pump Inta	ake (ft): L	44	from be	010	m	Well N	Mouth PID	(ppm):	N/	A
	Water Co	olumn Thickness	(ft): 25.	5			Immiscit	ole Layer:			Yes	MO)		Ambie	ent PID (pp	m):	N/	Ą
	Remarks	3;																
CASING	Casing II	O (in) [a]:		1.0	1.5	1 (2	2.0)	2.2		3.0	4.0		4.3	T	5.0	T	6.0	7.0
INFO	Unit Casi	ing Volume (gal/l	in ft) [b]:	0.04	0.09	0	18	0.20)	0.37	0.65	5	0.75	5	1.0		1.5	2.0
Date	Time (24 hr)	Water Level (FTOC)	Volume Removed	Pumnin	g Rate (Lpm)	Temp	(C)	рН	Cond (m	,	DO (mg/L)	Turb	(NTU)	ORP	(mv)	Remarks	s (odor, cla	arity, etc)
1 0/-/18	1150	0.0	na	30	C	11.7	7	690	0.87	5	7.83	64.	3	87.	, (cuu	NO	OAOV
1	1100	BCO		_			_		_	-	1	-	/	0	-		1	

	Date	Time (24 hr)	Water Level (FTOC)	Volume Removed (L)	Pumping Rate (Lpm)	Temp (C)	рН	Cond (mS/cm)	DO (mg/L)	Turb (NTU)	ORP (mv)	Remarks (odor, clarity, etc)
1	0/ /18	1150	0.0	na	300	11.77	690	0.874	7.83	64.3	87.1	CRUY, NO ODON
	1	1155	8-0	nu	300	11.57	6:80	0.672	4.90	29.5	80.9	
		1200	0.0	na	300	11.43	6.84	0.00	3.29	17.8	754	
		1205	0.0	nu	300	11.47	6.87	0,670	3.20	12.6	73.2	
	1	1210	0.0	nu	300	11.52	6.88	0.471	3.05	100	71.9	

Pump Rate: <=0.5 L/min Drawdown: <0.33 ft Measurements: 5 mins Stabilization for 3 consecutive readings
Stabilization: +/-0.5C +/-0.1 nH +/-3% Cond +/-0.3 mg/l DO +/-10% Tub (or < 50 NT II) +/-10 mV OPP

Stabilization:	+/-0.50, +/-0.	трн,	+/-3% Cor	10, +/-	0.3 mg/L DO,	+/-10%	1 ub (or < 50 N 1	U), +/- 10 mV ORP		
Sample Date/Time	Licha	# of	Container	Container	Preservative	Filter	Pump, Bailer,	Duplicate (# of	MS/MSD (# of Containers)	Parameter(s) and Analytical Method
1210	418/19	Containers	Volume	Material	1 103CI VALIVC	(Y/N)	Foot Valve	Containers)	WISHVISD (# OF CONTAINERS)	Farameter(s) and Analytical Method
Laboratory and		(3)	40mL	VOA	HCI	N	Pump			VOCs
Chain-of-Custody	#:187225	(3)	40mL	VOA	HCI	N	Pump			1,4-Dioxane
		2	40mL	VOA	HCI	N	Pump			Methane, Ethane, Ethene (MNAs)
ALS		1	250mL	Plastic	H2SO4	N	Pump			Nitrite/Nitrate (MNAs)
		1	500mL	Plastic		N	Pump			Chloride, Sulfate, Metals (MNAs)
		1	500mL	Plastic	ZnAc	N	Pump			Sulfide (MNAs)

										v	
	Site: SSW Collis			Welli ID	Mw-53			D	ate: 4	18/19	
LOCATION	Project: #: LTM SA2 2018	SSW Collis		Sample	ID: COL-G	W-05		R	ecorded by: K	Geoglish NA	
	Weather Conditions & Barometric Pr	ressure:									
FOLUDATA	Purging Equipment: Riadup	/		Water L	evel Indicator: 5	olinst	200904		PID Type/ID#:	NA	
EQUIPMENT		YSI			g Equipment: 3						9870
	Casing ID (in): 2;			Well Vol	ume: ~ 8.35	Gel .		C	ondition of Well:	Gera	
	Initial Depth to Water (ft): 0.0				lume Purged: ^			w	ater in Well Vault	NFO.	
WELL INFO	Total Well Depth (ft): 57.24			Depth of	Pump Intake (ft)	L482	from bor		ell Mouth PID (pp	SE NA and #: Munnary Geod 1? NO om): NA 1: NA	
	Water Column Thickness (ft): 52-	24			ole Layer:	Yes		1	mbient PID (ppm):		
	Remarks:										
CASING	Casing ID (in) [a]:	1.0	1.5	12.0	2.2	3.0	4.0	4.3	5.0	6.0	7.0
INFO	Unit Casing Volume (gal/lin ft) [b]:	0.04	0.09	(0.16	0.20	0.37	0.65	0.75	1.0	-	2.0

418119

	Date	Time (24 hr)	Water Level (FTOC)	Volume Removed (L)	Pumping Rate (Lpm)	Temp (C)	рН	Cond (mS/cm)	DO (mg/L)	Turb (NTU)	ORP (mv)	Remarks (odor, clarity, etc)
	10/-/18	1240	0-0	nu	220	17.29	7.15	0.614	8.27	5.42	-41:3	Clear; No odor
		1245	0.0	na	150	1708	701	0.549	4.18	3.77	-47.7)
		1250	6.0	na	250	12.10	7.05	0.597	3.84	7.99	-45.3	
		1255	0.0	nu	250	12.12	7.06	0.590	3.80	2.11	-47-0	
	V	1300	0.0	na	250	12.19	7-00	0.590	3.71	2.0Le	-467	
-												
_												

Pump Rate: <=0.5 L/min Drawdown: <0.33 ft Measurements: 5 mins Stabilization for 3 consecutive readings Stabilization: +/-0.5C, +/-0.1 pH, +/-3% Cond, +/- 0.3 mg/L DO, +/-10% Tub (or < 50 NTU), +/- 10 mV ORP Sample Date/Time: Container Pump, Bailer, Container Filter Duplicate (# of Preservative Parameter(s) and Analytical Method MS/MSD (# of Containers) 1300 Containers Volume Material (Y/N)Foot Valve Containers) Laboratory and 40mL VOA HCI Pump Ν VOCs Chain-of-Custody #: 187223 40mL VOA HCI Pump 1,4-Dioxane 40mL VOA HCI N Pump Methane, Ethane, Ethene (MNAs) ALS 250mL H2SO4 Plastic Ν Pump Nitrite/Nitrate (MNAs) 500mL Plastic N Pump Chloride, Sulfate, Metals (MNAs) 500mL Plastic ZnAc Pump Sulfide (MNAs)

H:\jobs\SSW\Collis, IA\02028025 - 2019 Long-Term Monitoring\1st Semi-annual Sampling Event\01 - Preparation\Field Forms\Monitoring Well Sample Collection.docx
Page 1 of 2 April 2019

BB&E

	Site: SSW Collis			WellI ID:	MW-50	1		D	ate: 4/	8/19	
LOCATION	Project: #: LTM SA2 2018 S			Sample	ID: COL-G	W- OU		Re	ecorded by: K	NA and #: Hûnna?	
	Weather Conditions & Barometric Pr	essure: 700F	sun, 30.0	2 inr	19						
EQUIPMENT	Purging Equipment: Blader	,			evel Indicator:50		200909		PID Type/ID#:	NA	
EQUIT WENT	Water Quality Meter Type and #:	YSI		Sampling	g Equipment: B	1999A			Turbidimeter a	nd#: Hûnna	Mi 9870
	Casing ID (in): ₹ ;✓			Well Vol	ume: ~ 4.5	Gu1		Co	ondition of Well:		
	Initial Depth to Water (ft): 1.58			Total Vo	lume Purged: ~	7.5 gal		W	ater in Well Vault?	and #: [Hû(nna F t? pm): NA): NA	
WELL INFO	Total Well Depth (ft): 30			Depth of	Pump Intake (ft):	L44 4	nom bott	on W	ell Mouth PID (ppr		
	Water Column Thickness (ft): 29.	42			ole Layer:	Yes	6		nbient PID (ppm):		
	Remarks:			-							
CASING	Cooing ID (in) Inl	1.0	4.5		0.0	0.0			T		
INFO	Casing ID (in) [a]:	1.0	1.5	2.0	2.2	3.0	4.0	4.3	5.0		7.0
INFO	Unit Casing Volume (gal/lin ft) [b]:	0.04	0.09	0.16	0.20	0.37	0.65	0.75	1.0	1.5	2.0

418119

	D	ate	Time (24 hr)	Water Level (FTOC)	Volume Removed (L)	Pumping Rate (Lpm)	Temp (C)	рН	Cond (mS/cm)	DO (mg/L)	Turb (NTU)	ORP (mv)	Remarks (odor, clarity, etc)
9 -	10/	-/18 -	1335	1.00	na	250	13.48	7.28	6540	14.4	70.9	-57.8	CLEUC NU OCON
	1		1340	171	na	250	10.54	6.70	6.527	11,30	Shu	-36.4	, , ,
			1345	1.71	nu	250	10-13	6.64	0.517	10.3	21.6	-37.7	
	_		1350	1-77	na	250	9.84	6.44	0.513	10-1	20.7	-38.4	
	A		1355	1.77	na	250	9.84	6 67	0.517	10.01	16.7	-30.0	
-													
-													

Ctabilization. 170.00, 170.	i pi i,	17-370 001	iu, 17-	U.S HIGHL DO,	T/-10 /0	100 (01 > 30 141	10),	+/- 10 mV ORP		
Sample Date/Time: (18) iq	# of	Container	Container	Preservative	Filter	Pump, Bailer,		Duplicate (# of	MOMOD (# - CO - L-)	5
1 2 1 7	Containers	Volume	Material	rieservative	(Y/N)	Foot Valve		Containers)	MS/MSD (# of Containers)	Parameter(s) and Analytical Method
Laboratory and	(3)	40mL	VOA	HCI	N	Pump		(3)		VOCs
Chain-of-Custody #: \87273	3	40mL	VOA	HCI	N	Pump		\supseteq		1,4-Dioxane
ALC.	2	40mL	VOA	HCI	N	Pump		_		Methane, Ethane, Ethene (MNAs)
ALS	_	250mL	Plastic	H2SO4	N	Pump		_		Nitrite/Nitrate (MNAs)
	+	500mL	Plastic		N	Pump		_		Chloride, Sulfate, Metals (MNAs)
	+	500mL	Plastic	ZnAc	N	Pump		_		Sulfide (MNAs)
HiliabelCCIACOllia IAID2020025 20	140 I ann Tann		4-40				_			

H:\jobs\SSW\Collis, IA\02028025 - 2019 Long-Term Monitoring\1st Semi-annual Sampling Event\01 - Preparation\Field Forms\Monitoring Well Sample Collection.docx
Page 1 of 2 April 2019

MCOIRE April 2019

& BB&E

					• • • • • • • • • • • • • • • • • • • •								Se.		XL
	Site:	SSW C	Collis			Welli	ID: MW	-43			Da	te:	4/8/19		
LOCATION	Project:	#: LTM SA	2 2018 SS	N Collis		Samp	ole ID: C	OL-GW- რა	<u> </u>		Rec	corded by:	KVB		
	Weather	Conditions & Ba	rometric Pressi	ire: 70°6	, sun,										
EQUIPMENT	Purging	Equipment: (3	varypi			Water	Level Indica	itor: Solinsi	7000	104		PID Type/	'ID#:	NA	
EQUIPMENT		uality Meter Type		SI				ent: Bludge				Turbidime	ter and #: Ha	nhaHi	987
	Casing I	D (in): てい				Well	/olume: ~	15.9			Con	ndition of We	ell: Geoc	`	
	Initial De	epth to Water (ft):	0.0			Total	Volume Purg	jed: ~2.5 ya	1		-		4/8/19 KVB //D#: NA eter and #: Hanh a etl: Geac //autt? No		
WELL INFO		ell Depth (ft):						ake (ft): L 4 +3		borrom	Wel	Mouth PID	(ppm):	NA	
	Water C	olumn Thickness	(ft): 9 4.32	5		Immis	cible Layer:		Yes	No)	Amt	bient PID (p	pm):	NA	
	Remarks	S;													
CASING	Casing II	O (in) [a]:		1.0	1.5	(2.0)	2.2	3.0	4.0	0 4.3	3	5.0	6.0	7.	.0
INFO	Unit Cas	ing Volume (gal/	in ft) [b]:	0.04	0.09	0.16	0.2	0 0.37	0.6	5 0.7	5	1.0	1.5	2.	.0
Date	Time (24 hr)	Water Level (FTOC)	Volume Removed (L)	Pumping	Rate (Lpm)	Temp (C)	pН	Cond (mS/cm)	DO (mg/L)	Turb (NTU)	OF	RP (mv)	Remarks (odo	or, clarity, etc)	
10/-/18	1430	0:10	10 CA	75	,	15.14	785	0.581	C 10	287	_ (13.4	C185 C	110 0600	

418119

	Date	Tim (24 h		Water Level (FTOC)	Volume Removed (L)	Pumping Rate (Lpm)	Temp (C)	рН	Cond (mS/cm)	DO (mg/L)	Turb (NTU)	ORP (mv)	Remarks (odor, clarity, etc)
1	10/ /18	143	,0	0.0	na	250	15.14	7.55	0.581	5.10	8.87	-43.4	Clear, NO odor
L		143	5	0-0	na	250	14.77	7.29	0.572	1.57	7.62	- 57.2	
		144	U	0.0	na	250	14.77	7.34	6.578	0,94	1.77	-64-0	
		144	5	0-0	ha	150	14.60	7.55	6.572	6.70	1.60	-625	
		145	0	6.0	nu	250	14.63	7:34	0.574	6.77	1.58	-60.7	
	V	145	5	0-0	nei	250	14.57	7.35	6.570	0.70	1.59	-60.3	

Pump Rate: <=0.5 L/min Drawdown: <0.33 ft Measurements: 5 mins Stabilization for 3 consecutive readings +/-0.5C, +/-0.1 pH, Stabilization: +/-3% Cond. +/- 0.3 mg/L DO, +/-10% Tub (or < 50 NTU). +/- 10 mV ORP Sample Date/Time: # of Container Container Filter Pump, Bailer, Duplicate (# of Preservative Parameter(s) and Analytical Method MS/MSD (# of Containers) Containers Volume Material (Y/N)Foot Valve Containers) Laboratory and Chain-of-Custody #: \87773 40mL VOA HCI VOCs N Pump 40mL VOA HCI Ν Pump 1,4-Dioxane 40mL VOA HCI N Pump Methane, Ethane, Ethene (MNAs) ALS 250mL Plastic H2SO4 N Pump Nitrite/Nitrate (MNAs) 1 500mL Plastic N Pump Chloride, Sulfate, Metals (MNAs) 500mL **Plastic** ZnAc Pump Sulfide (MNAs)

H:\jobs\SSW\Collis, IA\02028025 - 2019 Long-Term Monitoring\1st Semi-annual Sampling Event\01 - Preparation\Field Forms\Monitoring Well Sample Collection.docx Page 1 of 2 April 2019

	Site: SSW Collis			Welli ID	MW-38				ate: 4	18 /19	
LOCATION	Project: #: LTM SA2 2018	SSW Collis			ID: COL-G			R	ecorded by: K	(VB	
	Weather Conditions & Barometric P	ressure: 70°F	Sun, 30	or in	Hy			•			
EQUIPMENT	Purging Equipment: Bladat	V		Water L	evel Indicator: C	winst.	200904		PID Type/ID#:		
EQUIPMENT	Water Quality Meter Type and #:	YSI		Samplin	ng Equipment: $\sqrt{2}$	Sladder			Turbidimeter a	and #: Hunna	H1 9871
	Casing ID (in): 25			Well Vo	olume: ~ 19	—————————————————————————————————————		С	ondition of Well:	Good	
	Initial Depth to Water (ft): 3.74			Total Vo	olume Purged: ~	ryal		N	Vater in Well Vault	5 NO	
WELL INFO	Total Well Depth (ft): 9-95			Depth o	of Pump Intake (ft): Luft fn	om borto	em M	Vell Mouth PID (pp	m): NA	
	Water Column Thickness (ft): 6.	16		Immisci	ble Layer:	Yes	M _O	A	mbient PID (ppm):	: NA	
	Remarks:										
CASING	Casing ID (in) [a]:	1.0	1.5	(2.0)	2.2	3.0	4.0	4.3	5.0	6.0	7.0
INFO	Unit Casing Volume (gal/lin ft) [b]:	0.04	0.09	(0.16)	0.20	0.37	0.65	0.75	1.0	1.5	2.0
Data	Time Water Level Volum	ne D	Data (Lam)	F (C)	-11 0	1/0/>) ((1) T+	(AITI)	ODD () R	emarks (odor, clar	ity, etc)

418119

Date	(24 hr)	Water Level (FTOC)	Volume Removed (L)	Pumping Rate (Lpm)	Temp (C)	pН	Cond (mS/cm)	DO (mg/L)	Turb (NTU)	ORP (mv)	Remarks (odor, clarity, etc)
10/- /18	1510	3.86	na	200	9.64	6.95	1,216	6.41	5,72	44.3	(Rur No oder
i	1515	3.89	na	200	9.32	6.73	1.204	6.72	5.16	55.0	,
	1570	3.91	na	200	9.20	6.77	1,190	12.00	4.01	53.U	
	1525	3.91	nn	200	9.14	6.71	1.180	1.71	3.67	41.3	
	1530	392	200	200	9.13	6.70	1.180	1.05	3.32	23.0	
	1535	3.97	na	206	9.10	6.09	1.178	1.70	3.46	20,7	
V	1540	3.92	na	200	9,11	6.70	1.176	1.70	3.01	21.8	
										-	-

Pump Rate: <=0.5 L/min Drawdown: <0.33 ft Measurements: 5 mins Stabilization for 3 consecutive readings

Stabilization: +/-0.5 C +/-0.1 nH +/-3% Cond +/-0.3 mg/L DO +/-10% Tub (or < 50 NTLI) +/-10 mV ORP

Stabilization, 17-0.50, 17-0.	pri,	17-3 /0 001	u, 17-	U.S HIG/L DO,	17-1070	100 (01 - 30 M10), TI- TO HIV ORF		
Sample Date/Time: 4/8/19	# of	Container	Container	Preservative	Filter	Pump, Bailer,	Duplicate (# of	MS/MSD (# of Containers)	Desemptor(a) and Applytical Mathed
1540 118119	Containers	Volume	Material	rieservative	(Y/N)	Foot Valve	Containers)	MS/MSD (# or Containers)	Parameter(s) and Analytical Method
Laboratory and	(3)	40mL	VOA	HCI	N	Pump			VOCs
Chain-of-Custody #: 187223	3-	40mL	VOA	HCI	N	Pump			1,4-Dioxane
	27	40mL	VOA	HCI	N	Pump			Methane, Ethane, Ethene (MNAs)
ALS	4-	250mL	Plastic	H2SO4	N	Pump			Nitrite/Nitrate (MNAs)
	4-	500mL	Plastic		N	Pump			Chloride, Sulfate, Metals (MNAs)
	1	500mL	Plastic	ZnAc	N	Pump			Sulfide (MNAs)

& BB&E

			THE RESIDENCE OF THE PARTY OF T							v	
	Site: SSW Collis			Welli ID	MW-50			Da	ate: 4	19 /19	
LOCATION	Project: #: LTM SA2 2018				ID: COL-C	W-10		Re	corded by:	(VB	
	Weather Conditions & Barometric Pr	ressure: 50°	f Sun,	30.02	n 19						
EQUIPMENT	Purging Equipment: Blueder			Water L	evel Indicator: S	olinst	200904		PID Type/ID#	: NA	
Egon men	Water Quality Meter Type and #:	YSI		Samplin	g Equipment: 3	ladder			Turbidimeter a	and #: Hanne	MI 987
	Casing ID (in): 2;			Well Vol	lume: ~ 3.4	(e ger)		Co	ndition of Well:	6001	
	Initial Depth to Water (ft): 3 小 O				olume Purged: -			Wa	ater in Well Vault		
WELL INFO	Total Well Depth (ft): 24.77			Depth of	f Pump Intake (ft)	144 F		Hom We	ell Mouth PID (pp		1
	Water Column Thickness (ft): 21.	67			ole Layer:	Yes	23		nbient PID (ppm)		
	Remarks:			-							•
CASING	Casing ID (in) [a]:	1.0	1.5	(2.0)	2.2	3.0	4.0	4.3	5.0	6.0	7.0
INFO	Unit Casing Volume (gal/lin ft) [b]:	0.04	0.09	(0.18)	0.20	0.37	0.65	0.75	1.0	1.5	2.0

4/9/19

	Da	ate	Time (24 hr)	Water Level (FTOC)	Volume Removed (L)	Pumping Rate (Lpm)	Temp (C)	рН	Cond (mS/cm)	DO (mg/L)	Turb (NTU)	ORP (mv)	Remarks (odor, clarity, etc)
-	10/	/18	0750	3.12	na	200	11.40	7.40	0.502	6.45	44.7	1202	(lear No ora
L			0755	3.14	Na	700	11841	7.10	0.510	7.88	38.1	107.7	
L			0800	3.14	nu	200	12.09	7.02	0.549	2,18	76.4	97.2	
L			0805	3.15	nu	200	12.33	6.85	1.396	1,70	707	35.9	
L			0810	3.15	na	700	12,55	6.89	1.794	1,411	7.75	-2112	
L	_		3815	316	na	200	12.52	6.89	1.429	1.21	6.89	-37.5	
L	_		0870	3-16	na	200	12.53	6.89	1,949	1.15	5.64	- 34.7	
L	_	,	0825	3.14	na	200	17.56	6.89	1.992	1.10	5.06	-35. Le	
	¥		0830	3.10	na	700	12.54	6.89	1,990	0.99	4,62	-36.1	

Pump Rate: <=0.5 L/min Drawdown: <0.33 ft Measurements: 5 mins Stabilization for 3 consecutive readings
Stabilization: +/-0.5C +/-0.1 pH +/-3% Cond +/-0.3 mg// DO +/-10% Tub (or < 50 NTU) +/-10 my ORB

Ctabilization. 170.00, 170.	i pi i,	17-370 001	iu, 17-	0.5 mg/L DO,	7/-10%	100 (or < 50 N10	J), +/- 10 MV ORP		
Sample Date/Time:	# of	Container	Container	Preservative	Filter	Pump, Bailer,	Duplicate (# of	110/1100 /# 10 / :	_
0830 414/19	Containers	Volume	Material	rieservative	(Y/N)	Foot Valve	Containers)	MS/MSD (# of Containers)	Parameter(s) and Analytical Method
Laboratory and	(3)	40mL	VOA	HCI	N	Pump	1		VOCs
Chain-of-Custody #: 187223	_3_	40mL	VOA	HCI	N	Pump			1.4-Dioxane
	2	40mL	VOA	HCI	N	Pump			Methane, Ethane, Ethene (MNAs)
ALS	1	250mL	Plastic	H2SO4	Ν	Pump			Nitrite/Nitrate (MNAs)
	+	500mL	Plastic		N	Pump			Chloride, Sulfate, Metals (MNAs)
	1-	500mL	Plastic	ZnAc	N	Pump			Sulfide (MNAs)
11 11 1 1001450 W 14144444									

H:\jobs\SSW\Collis, IA\02028025 - 2019 Long-Term Monitoring\1st Semi-annual Sampling Event\01 - Preparation\Field Forms\Monitoring Well Sample Collection.docx
Page 1 of 2 April 2019

	Site: SSW Collis			Welli	D: MW- 9	SUS		Da	ate: 4/	9/19	
LOCATION	Project: #: LTM SA2 2018	SSW Collis		Samp	le ID: COL-(GW- 11		Re	corded by: K	VB	
	Weather Conditions & Barometric P	ressure: 70° f	Sun	30.027	n Hy			•			
EQUIPMENT	Purging Equipment: 310000	/		Wate	Level Indicator: S	solinst.	200904		PID Type/ID#:	NA	
EQUIPMENT	Water Quality Meter Type and #:	YSI		Samp	ling Equipment:	Biadder	•		Turbidimeter a	nd#: Many	na HI 987
	Casing ID (in): Ziv			Well	/olume: 1,45	saerl		Co	ndition of Well:	Guid	
	Initial Depth to Water (ft): 3,20				Volume Purged: ,			Wa	ater in Well Vault?	NO	
WELL INFO	Total Well Depth (ft): 12-78			Depth	of Pump Intake (f	t): Lyft fr	om born	om We	ell Mouth PID (ppr	m): NA	1
	Water Column Thickness (ft): 4,	6 9		Immis	cible Layer:	Yes	(6)	Am	bient PID (ppm):	N.A	1
	Remarks:			*							
CASING	Casing ID (in) [a]:	1.0	1.5	2.0	2.2	3.0	4.0	4.3	5.0	6.0	7.0
INFO	Unit Casing Volume (gal/lin ft) [b]:	0.04	0.09	0.16	0.20	0.37	0.65	0.75	1.0	1.5	2.0

419/19

	Date	Time (24 hr)	Water Level (FTOC)	Volume Removed (L)	Pumping Rate (Lpm)	Temp (C)	рН	Cond (mS/cm)	DO (mg/L)	Turb (NTU)	ORP (mv)	Remarks (odor, clarity, etc)
1 :	0/- /18	0845	3.75	NN	200	10.52	700	0.886	6.07	8.01	35.9	CHUI, NU Odor
		ひをかひ	3.28	nu	200	10.19	6.81	0.853	2.87	7.16	46.3	
		0855	3.30	nu	200	10.03	6.81	0.844	2.31	6.11	46.5	
		0900	3.31	nu	200	10.58	6.80	1.284	1.76	5.59	2.10	
		6905	3.32	na	200	10.67	6.84	1,305	1.51	4.98	-8.5	
	1	0910	3.32	na	700	Perol	6.87	1.303	1.40	467	-11. j	
	V	0415	5.32	nu	700	10 600	6.88	1.307	1.40	4.72	-12-8	
L												

Pump Rate: <=0.5 L/min Drawdown: <0.33 ft Measurements: 5 mins Stabilization for 3 consecutive readings

Stabilization: +/-0.5C, +/-0.1 pH +/-3% Cond +/-0.3 mg/LDQ +/-10% Tub (or < 50 NTU) +/-10 mV ORP

Otabilization. 10.00, 10.	P 11,	7 0 70 001	14,	o.o mg/L oo,	., 1070	100 (01 - 00 141	oj, ii- io iliv Olai		
Sample Date/Time:	# of	Container	Container	Preservative	Filter	Pump, Bailer,	Duplicate (# of	MS/MSD (# of Containers)	Deservator(s) and Applytical Mathed
0915 4/9/19	Containers	Volume	Material	rieservative	(Y/N)	Foot Valve	Containers)	MS/MSD (# 01 Containers)	Parameter(s) and Analytical Method
Laboratory and	(3)	40mL	VOA	HCI	N	Pump			VOCs
Chain-of-Custody #:\&7 272	3-	40mL	VOA	HCI	N	Pump			1,4-Dioxane
	2	40mL	VOA	HCI	N	Pump			Methane, Ethane, Ethene (MNAs)
ALS	+	250mL	Plastic	H2SO4	N	Pump			Nitrite/Nitrate (MNAs)
	+	500mL	Plastic		N	Pump			Chloride, Sulfate, Metals (MNAs)
	1	500mL	Plastic	ZnAc	N	Pump			Sulfide (MNAs)

		on Jump	ic conc.	CLIOIT	OIIII											DDO
	Site:	SSW C	Collis			Well	IID: MN	-4	2				Date	e:	4/ 9 /19	
LOCATION	Project:	#: LTM SA	A2 2018 SS	W Collis			ple ID: C						Reco	orded by:	KVB	
	Weather	Conditions & Ba	arometric Press	ure: 70 °	, Sun		2 inno									
EQUIPMEN'	Purging	Equipment: Pe	instally (,	Wate	er Level Indic	ator: S	olins	- 2009	04		T	PID Type/I	D#: N	Α
EQUI IIIEN	Water Q	uality Meter Type	e and #: YS	SI		Sam	pling Equipm	ent:D t	ensta	Inc				Turbidimet	er and #: Hanr	u Hi 98203
	_	D (in): Zin				Well	Volume:~7	312	901				Conc	dition of We	11: 65000	
	Initial De	epth to Water (ft):	4.50			Total	Volume Pur	ged: ∿	2 aul				Condition of Well: Good Water in Well Vault? NO			
WELL INFO	Total We	ell Depth (ft):	50.2			Dept	h of Pump In	ake (ft)	L 2187	from	6000		Well	Mouth PID	(ppm):	۱A
	Water C	olumn Thickness	s (ft): 45.7				scible Layer:			Yes	(No)		Ambi	ient PID (pp		NA
	Remarks	3:				•										
CASING	THE RESERVE OF THE PERSON NAMED IN	O (in) [a]:		1.0	1.5	2.0	2.	2	3.0	4	0	4.3	T	5.0	6.0	7.0
INFO	INFO Unit Casing Volume (gal/lin ft) [b]: 0.04 0.09) 0.2	0	0.37	0.9	35	0.75		1.0	1.5	2.0
Date	Time (24 hr)	Water Level (FTOC)	Volume Removed (L)	Pumpin	g Rate (Lpm)	Temp (C)	рН	Cond	(mS/cm)	DO (mg/L)	Turb (N	NTU)	ORF	P (mv)	Remarks (odor, o	clarity, etc)
0/- /1 -8	0935	4,57	Na	200		12.84	7.49	0.	870	34.54	2-8	37	- (o.u	cuari	Va didan-
1	1.4		,	_			1	1			1	-				

419119

	Date	Time (24 hr)	Water Level (FTOC)	Volume Removed (L)	Pumping Rate (Lpm)	Temp (C)	рН	Cond (mS/cm)	DO (mg/L)	Turb (NTU)	ORP (mv)	Remarks (odor, clarity, etc)
9	10/ /18	0935	4,57	NX	200	12.84	7.49	0.870	34.54	2.87	-6.4	Cleur; No odor
		0940	4.54	ha	200	17.88	706	0.876	10.37	1.96	-8-0	
		0945	4.56	na	200	12.95	7,07	0.875	6.17	1.87	-14.7	
		0950	4.54	na	rai	13.02	7.05	0.882	4.58	1.60	-14.7	
		0955	4.54	hu	200	13.10	7.02	0.881	2.45	157	-134	
-	V	1000	4.50	na	Zoc	13.11	703	0. 583	2.54	1.36	-10.4	
-												
-												

Pump Rate: <=0.5 L/min Drawdown: <0.33 ft Measurements: 5 mins Stabilization for 3 consecutive readings Stabilization: +/-0.5C. +/-0.1 pH +/-3% Cond +/- 0.3 ma// DO +/-10% Tub (or < 50 NTU) +/- 10 m// OPP

Otabilization, 70.00, 70.	i pi i,	17-570 001	iu, iii	0.5 mg/L DO,	T/-1076	1 M OC > 10) du l	u), +/- 10 mly ORP		
Sample Date/Time: 419119	# of	Container	Container	Preservative	Filter	Pump, Bailer,	Duplicate (# of	110/1100 /# (0 / :)	-
1000	Containers	Volume	Material	Freservative	(Y/N)	Foot Valve	Containers)	MS/MSD (# of Containers)	Parameter(s) and Analytical Method
Laboratory and	(32	40mL	VOA	HCI	N	Pump	(3)	(12)	VOCs
Chain-of-Custody #: 187272	(32)	40mL	VOA	HCI	N	Pump	3	((a)	1.4-Dioxane
AL G	(2)	40mL	VOA	HCI	Ν	Pump	(3)	((a)	Methane, Ethane, Ethene (MNAs)
ALS	10	250mL	Plastic	H2SO4	Ν	Pump	(D)	(3)	Nitrite/Nitrate (MNAs)
	(1)	500mL	Plastic		N	Pump	(D)	A-	Chloride, Sulfate, Metals (MNAs)
		500mL	Plastic	ZnAc	N	Pump	$\widehat{\mathcal{M}}$	(E)	Sulfide (MNAs)
HilliahalCCMACallia IAIO2020025 20	040 L T								

H:\jobs\SSW\Collis, IA\02028025 - 2019 Long-Term Monitoring\1st Semi-annual Sampling Event\01 - Preparation\Field Forms\Monitoring Well Sample Collection.docx
Page 1 of 2 April 2019

& collect Duplitaire col-GW-13 and COL-GW-12 ms/msp

Nitrite/Nitrate (MNAs)

Sulfide (MNAs)

Chloride, Sulfate, Metals (MNAs)

		·													*		
	Site:	SSW C	ollis				Welli ID	MW	-34				Dat	e:	4/9 /19		
LOCATION	Project: #:	LTM SA	2 2018 SS	N Collis			Sample	ID: CC	DL-GW-	14			Reco	orded by:	KVB		
	Weather Co	onditions & Ba	rometric Press	ire: 700£	sun	30	.02 7	my									
EQUIPMENT	Purging Equ	uipment: BL	Adder				Water L	evel Indica	tor: Sovi	nst	20000	14		PID Type/II	 D#:	NA	
EQUIPMENT	Water Qual	ity Meter Type	and #: YS	SI			-		nt: Bau					Turbidimete	er and #: H	innu	1,98702
	Casing ID (i	n): Zin					Well Vo	lume: ~	4.2 gc	. I			Cond	dition of Well	1: G C	02	
	Initial Depth	to Water (ft):	5,12						ed: ~7-5				Wate	er in Well Va	ult? N	C	
WELL INFO	Total Well D	Depth (ft): 3	1.6				Depth of	f Pump Inta	ake (ft):	484	fron	2 borto	Well	Mouth PID ((ppm):	NA	
	Water Colu	mn Thickness	(ft): 26.4	8			Immiscil	ole Layer:		Yes	s /	(o)	-	ient PID (pp		NA	
	Remarks:																
CASING	Casing ID (i	n) [a]:		1.0	1.5	T	2.0	2.2		3.0	4.0	4.3		5.0	6.0)	7.0
INFO	Unit Casing	Volume (gal/li	in ft) [b]:	0.04	0.09	1	0.16	0.20)	0.37	0.65	0.75		1.0	1.5	-	2.0
Date	Time (24 hr)	Nater Level (FTOC)	Volume Removed (L)	Pumping	g Rate (Lpm)	Tem	p (C)	рН	Cond (mS	/cm) Do	O (mg/L)	Turb (NTU)	ORI	P (mv)	Remarks (o	dor, clarit	y, etc)

419119

	Date	Time (24 hr)	Water Level (FTOC)	Volume Removed (L)	Pumping Rate (Lpm)	Temp (C)	pН	Cond (mS/cm)	DO (mg/L)	Turb (NTU)	ORP (mv)	Remarks (odor, clarity, etc)
4	0/_/18	1105	5-14	na	300	11.78	7.00	J.866	12.74	2.7U	52.3	Meuri No + del
		1110	5.14	Na	300	11.91	6.89	0.8kg	14.52	1.68	59.7	
		1115	SILV	no	200	11.53	6.91	0.869	7,96		58.1	
		1120	5.16	na	300	11.70	6.89	0.872	1.78	1.26	57.3	
		1125	514	na	300	11.71	6.90	0.973	1.59	i-37	Si. le	
		-										
_												

Pump Rate: <=0.5 L/min Drawdown: <0.33 ft Measurements: 5 mins Stabilization for 3 consecutive readings +/-0.5C, +/-0.1 pH, Stabilization: +/-3% Cond. +/- 0.3 mg/L DO, +/-10% Tub (or < 50 NTU), +/- 10 mV ORP Sample Date/Time: Container # of Container Filter Pump, Bailer, Duplicate (# of 4/9/19 Preservative Parameter(s) and Analytical Method MS/MSD (# of Containers) 1125 Containers Volume Material (Y/N) Foot Valve Containers) Laboratory and 40mL VOA HCI Pump N VOCs Chain-of-Custody #: 187777 40mL VOA HCI 1,4-Dioxane Pump 40mL VOA HCI Ν Pump Methane, Ethane, Ethene (MNAs) ALS 250mL **Plastic** H2SO4 N Pump

N

Pump

500mL **Plastic** ZnAc N Pump H:\jobs\SSW\Collis, IA\02028025 - 2019 Long-Term Monitoring\1st Semi-annual Sampling Event\01 - Preparation\Field Forms\Monitoring Well Sample Collection.docx Page 1 of 2 April 2019

500mL

Plastic

& BB&E

	Site: SSW Collis			Welli ID:	MW-39			Da	Date: 4/9 /19			
LOCATION	Project: #: LTM SA2 2018	SSW Collis		Sample	ID: COL-G	W-15		Re	Recorded by: KVB			
	Weather Conditions & Barometric Pressure: 700 Sun, 30,02 mmy											
EQUIPMENT	Purging Equipment: Bladder	Water Le	Water Level Indicator: Solvinst 200904					PID Type/ID#: NA				
EQUI INCIVI	Water Quality Meter Type and #:	YSI		Samplin	g Equipment: 3	279-61			Turbidimeter a	and #: Mann	ani 9870	
	Casing ID (in): Zin	Well Vol	Well Volume: 1.73 qui					Condition of Well:				
	Initial Depth to Water (ft): 3.61		Total Volume Purged: ~ 2 gul					Water in Well Vault? 100				
WELL INFO	Total Well Depth (ft): 13.91		Depth of Pump Intake (ft): Lyft from bottom					m): NA				
	Water Column Thickness (ft): 10.		Immiscible Layer: Yes					Ambient PID (ppm): NA				
	Remarks:											
CASING	Casing ID (in) [a]:	1.0	1.5	(2.0)	2.2	3.0	4.0	4.3	5.0	6.0	7.0	
INFO	Unit Casing Volume (gal/lin ft) [b]:	0.04	0.09	0.16	0.20	0.37	0.65	0.75	1.0	1.5	2.0	

4/9/19

	Date		Time (24 hr)	Water Level (FTOC)	Volume Removed (L)	Pumping Rate (Lpm)	Temp (C)	рН	Cond (mS/cm)	DO (mg/L)	Turb (NTU)	ORP (mv)	Remarks (odor, clarity, etc)
-	10/	/18_	1200	3.62	na	200	13.3)	6.69	1.954	4.24	3.40	-13.3	Cleur NO Oder
	1		1205	3-45	Na	200	13.38	6.58	1,960	1.19	2,77	-17.1	,
			1710	7.45	nu	200	1340	4.59	1,967	0.81	1.62	-14-8	
			1215	3.65	na	200	13.50	6.60	1,971	670	0.90	- Ne.3	
			1220	3.65	no	200	13.52	6.60	1,965	6.63	0,92	-17.2	
								•					

Pump Rate: <=0.5 L/min Drawdown: <0.33 ft Measurements: 5 mins Stabilization for 3 consecutive readings Stabilization: +/-0.5C, +/-0.1 pH, +/-3% Cond. +/- 0.3 mg/L DO, +/-10% Tub (or < 50 NTU). +/- 10 mV ORP Sample Date/Time: # of Container Container Pump, Bailer, Duplicate (# of Filter Preservative 4/9/19 Parameter(s) and Analytical Method MS/MSD (# of Containers) Containers Volume Material (Y/N) Foot Valve Containers) Laboratory and 0 40mL VOA HCI Ν Pump VOCs Chain-of-Custody #: \87227 3 40mL VOA HCI N Pump 1,4-Dioxane 2 40mL VOA HCI Ν Pump Methane, Ethane, Ethene (MNAs) ALS 1 250mL Plastic H2SO4 Ν Pump Nitrite/Nitrate (MNAs) 4 500mL Plastic N Pump Chloride, Sulfate, Metals (MNAs) 500mL **Plastic** ZnAc N Pump Sulfide (MNAs)

H:\jobs\SSW\Collis, IA\02028025 - 2019 Long-Term Monitoring\1st Semi-annual Sampling Event\01 - Preparation\Field Forms\Monitoring Well Sample Collection.docx Page 1 of 2 April 2019

	SAI Zoig LTM Monitoring
	Pick up Equipment and cal chuck equipment
0500	Stain water level measurements
3460	Communa pury; @ My - 475
0935	
0956	Sample MW-475 (COL-GW-01) EV VOCS
1050	Sampu P2-47 For VOCS (COL-GW-02)
1035	Commence Pury @ pz-48
1100	Sample pz-48 (COL-GW-OS) For VOCS
1130	
1150	Dump 25 yal purge where @ SSW WWFP
1210	Communia prings @ MW-45
	Sampy MW-45 (COI-GW-OY) For YOU, 1,4- D. DAGING
1240	Communu purge @ MW-53
1335	Sumpu mw-55 (ca-6w-05) for voi, gase, 1,4-dioxane, mNA
	commune pury @ mw-56
1355	Samar MW-SU For voes (COL-GW-OU) and duplicate
1470	(COL - GW - UT) BON VOCS
1430	commence purp a mro-43
1455	Sampy MW-43 (col-GW-08) for voes
1510	Communu pury @ mw-38
1540	Sampu MW-38 For VULS (COL-GW-OG)
1600	dump ~ 10 gal pury water @ SSW WNTP
415	cal chell equipment and particula
700	KRS Offsill
1	
-	
	(8)
	2

SAI ZOIG LTM Day 2 Kip onsiH (a) Chell Equitment Communice purgé Q MW 50 sampe mw so (carew-10) for vois 830 895 COMPRING PURY CO MW-505 Sumple MW-SUS for VIVES (COL-GW-11) 915 COMMUNI PUM @ MW-42 Sampy MW.42(Corgue-12) and cor-6w-12ms/msD and 00 Dupliture Col-GW-13 for vecs, 4-sturane, MNA commence puly @ MW-39 05 Sampu MW-34 (col- GN-14) for Nas, 1,4- ohoxanu, MNA 25 Dump ~ 10 gal pury water @ warp 140 commune pungi @ MW-39 200 Sampe MW-39 (COL-GW-15) for voca 275 collect Equipment blank (EB) from Bladder primp 230 VOC, 1,4 diexam, MN4S. pacie up equipment | car cheur 300 16 VB OFFS. 21 ,500 Ship cooler/Equipment (000)

419/19

ATTACHMENT C GRAVEL LOT INSPECTION

SEMI-ANNUAL INSPECTION RECORD Media Management Plan Collis, Inc. Property Clinton, Iowa

Ciliton, Iowa	Inspection performed by: KWO
	Date: 4/9/14
	Weather: 75°F Sum
1) Gravel Truck Lot	
See attached figure for area to be inspected. Inspect grave showing overall condition of the lot and gravel coverage, incl	el condition and list observations below. Take photographs luding close-up photographs detailing specific observations.
1) Inspect for evidence of excessive erosion. If excessive ero (e.g., regrading, placement of new gravel, etc.).	osion is observed, document necessary corrective measures
No Evidence of excessive	evosion
2) Inspect for evidence of burrowing animals. If evidence of b measures (e.g., filling of burrow holes, etc.).	burrowing animals observed, document necessary corrective
No Evidence of burrowing	animals
3) Inspect for areas of poor drainage or ponding. If evide necessary corrective measures (e.g., regrading, placement of	ence of poor drainage or ponding are observed, document f new gravel, etc.).
No areas of Pour drawaye	or Pendiny
	getation). If bare areas are observed, document necessary
No bare areas	
Additional/Other Maintenance needed? Yes No	
Location/explanation:	
Corrective measures must be completed within 60 days of d corrective measures implementation must be provided to BB	discovery (weather permitting) and documented evidence of B&E as part of the certification process.
Follow-up Inspection (after repair):	Performed by:
	Date:

Photo 1

Photo 2

Photo 3

Photo 4

Photo 5

Photo 6

Photo 7

Photo 8

Photo 9

ATTACHMENT D COST ESTIMATE REVIEW

July 8, 2019

D. Mark Doolan U.S Environmental Protection Agency Air and Waste Management Division, WRAP Branch 11201 Renner Blvd. Lenexa, KS 66219 913-551-7169

RE: Collis, Inc Annual Certification for Compliance with LUCs/ICs for first half 2019 USEPA Reference ID No. IAD047303771

As a condition of the Environmental Restrictive Covenant (ERC) entered into between the United States Environmental Protection Agency (USEPA), SSW Realty Iowa, LLC, and Collis, Inc (Collis), Collis is required to provide the USEPA Project Coordinator with a written Annual Report describing compliance with the implementation of Land Use Controls (LUCs)/Institutional Controls (ICs) for soil and groundwater at the Collis property, as detailed in the ERC. In order to verify the implementation of LUCs/ICs at the Collis property, semi-annual inspections are conducted. The first half 2019 semi-annual inspection was conducted April 8, 2019.

- 1. Status of compliance with land use or resource use restrictions, including institutional controls, as stated in the ERC:
 - The property is not being utilized for residential purposes
 - There has been no construction or use of wells or other devices on the property for the extraction of groundwater to be used for consumption, irrigation, or any other purpose.
 - There has been no in-situ treatment of the groundwater to expedite groundwater remediation.
 - There has been no excavation or subsurface activity greater than two (2) feet below ground surface at the property.
 - The gravel lot has been inspected and maintained on a semi-annual basis.
 - No activities were conducted that would interfere with the function of or obstruct access to any groundwater monitoring wells, vapor pins, and/or monitoring devices located on the property.
 - No new structures planned for human occupancy were built on the property.
- 2. Any other relevant information regarding other activities or matters at the Collis facility that affect or may affect the implementation of the requirements of the ERC:
 - None noted

This concludes our Annual Certification Report for calendar year 2018; if you have questions feel free to contact me at (517) 227-6118.

Sincerely,

Brian Calhoun

Corporate Safety & Environmental Director SSW Holding Company, LLC 176 West Colon Road Coldwater, MI 49036

(517) 227-6118

bcalhoun@sswholding.net

235 E. Main St, Suite 107 Northville, MI 48167 248.489.9636